全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

上地壳纵横波速度结构相关反演成像方法

DOI: 10.6038/cjg20151011, PP. 3553-3570

Keywords: 上部地壳,纵横波速度结构,相关反演,有限差分,反投影

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于纵横波初至走时数据的层析成像方法越来越广泛地被应用于揭示不同构造域壳幔速度结构特征.我们从同一地质体的纵横波速度属性相关这一基本思想出发,提出一种相关反演成像的方法:纵横波速度反演交替进行,在迭代反演过程中每通过一次反演获得相应的纵波速度(或横波速度)结构后,更新相应的纵横波速度比模型以及相应的横波(或纵波)速度反演的初始模型,然后继续开展后续横波(或纵波)速度反演工作.在反演过程中依据纵横波速度的相关性信息和射线路径长度将走时残差以不同权重分配到射线路径经过的单元,依据网格节点周围平均的慢度扰动更新速度模型.正反演过程分别基于有限差分走时计算方法和反投影成像方法.两种典型模型试验表明,该技术应用于上地壳速度结构反演成像过程,可有效提高反演结果的可靠性,在很大程度上避免了常规单独反演纵波和横波速度过程容易带来的畸变和失真.该方法应用于重建青藏高原西部札达—泉水沟深地震测深(DSS)剖面下方的上地壳速度结构,揭示出与青藏高原西缘板块碰撞相关的上地壳速度结构特征.

References

[1]  Wang C Y, Mooney W D, Wang X L, et al. 2002. Study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunnan region, China. Acta Seismologica Sinica (in Chinese), 24(1): 1-16, doi: 10.3321/j.issn:0253-3782.2002.01.001.
[2]  Wang F Y, Duan Y H, Yang Z X, et al. 2008. Velocity structure and active fault of Yanyuan-Mabian seismic zone—The result of high-resolution seismic refraction experiment. Science in China Series D: Earth Sciences, 51(9): 1284-1296.
[3]  Wang S F, Zhang W L, Fang X M, et al. 2008. Magnetic & stratigraphic characteristics and tectonic significance of Zhada Basin in Southwest Tibet. Science in China (in Chinese), 53(6): 676-683.
[4]  Wang Z. 2014. Joint inversion of P-wave velocity and VP-VS ratio: imaging the deep structure in NE Japan. Applied Geophysics, 11(2): 119-127.
[5]  Wittlinger G, Vergne J, Tapponnier P, et al. 2004. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth Planet. Sci. Lett., 221(1-4): 117-130.
[6]  Xu T, Xu G M, Gao E G, et al. 2004. Block modeling and shooting ray tracing in complex 3D media. Chinese J. Geophys. (in Chinese), 47(6): 1118-1126, doi: 10.3321/j.issn.0001-5733. 2004.06.027.
[7]  Xu T, Xu G M, Gao E G, et al. 2006. Block modeling and segmentally iterative ray tracing in complex 3D media. Geophysics, 71(3): T41-T51.
[8]  Xu T, Zhang Z, Gao E, et al. 2010. Segmentally iterative ray tracing in complex 2D and 3D heterogeneous block models. Bull. Seismol. Soc. Am., 100(2): 841-850.
[9]  Xu T, Li F, Wu Z B, et al. 2014. A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models. Tectonophysics, 627: 72-81, doi: 10.1016/j.tecto.2014.02.012.
[10]  Xu Z Q, Li H B, Tang Z M, et al. 2011. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults. Acta Petrologica Sinica (in Chinese), 27(11): 3157-3170.
[11]  Zelt C A. 1999. Modelling strategies and model assessment for wide-angle seismic traveltime data. Geophys. J. Int., 139(1): 183-204.
[12]  Zhang H J, Thurber C, Bedrosian P. 2009a. Joint inversion for VP, VS, and VP/VS at SAFOD, Parkfield, California. Geochem. Geophys. Geosyst., 10(11), doi: 10.1029/2009GC002709.
[13]  Zhang J, Toksozf M N. 1998. Nonlinear refraction traveltime tomography. Geophysics, 63(5): 1726-1737.
[14]  Zhang X K, Wang C Y, Liu G D, et al. 1996. Fine crustal structure in Yanqing-Huailai region by deep seismic reflection profiling. Chinese J. Geophys. (Acta Geophysica Sinica) (in Chinese), 39(3): 356-364.
[15]  Zhang Z J, Bai Z M, Mooney W, et al. 2009b. Crustal structure across the Three Gorges area of the Yangtze platform, central China, from seismic refraction/wide-angle reflection data. Tectonophysics, 475(3-4): 423-437, doi: 10.1016/j.tecto.2009.05.022.
[16]  Zhang Z J, Klemperer S, Bai Z M, et al. 2011. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in east Tibet, China. Gondwana Research, 19(4): 994-1007.
[17]  Zhao A H, Zhang Z J, Teng J W. 2004. Minimum travel time tree algorithm for seismic ray tracing: Improvement in effciency. J. Geophys. Eng., 1(4): 245-251, doi:10.1088/1742-2132/1/4/001.
[18]  Zhao A H, Ding Z F. 2005. A double-grid algrithm for calculating traveltimes of wide-angle reflection waves. Chinese J. Geophys. (in Chinese), 48(5) : 1141-1147.
[19]  Zhao F F, Ma T, Xu T. 2014. A review of the travel-time calculation methods of seismic first break. Progress in Geophys. (in Chinese), 29(3): 1102-1113, doi: 10.6038/pg20140313.
[20]  Ammon C J, Vidale J E. 1993. Tomography without rays. Bull. Seism. Soc. Am., 83(2): 509-528.
[21]  Bai Z M, Zhang Z J, Wang Y H. 2007. Crustal structure across the Dabie-Sulu orogenic belt revealed by seismic velocity profiles. J. Geophys. Eng., 4(4): 436-442.
[22]  Bregman N D, Bailey R C, Chapman C H. 1989. Crosshole seismic tomography. Geophysics, 54(2): 200-215, doi: 10.1190/1.1442644.
[23]  Caldwell W B, Klemperer S L, Rai S S, et al. 2009. Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersion. Tectonophysics, 477(1-2): 58-65.
[24]  Conder J A, Wiens D A. 2006. Seismic structure beneath the Tonga arc and Lau back-arc basin determined from joint VP, VP/VS tomography. Geochem. Geophys. Geosyst., 7(3): Q03018, doi: 10.1029/2005GC001113.
[25]  Ding Z F, He Z Q, Sun W G, et al. 1999. 3-D crust and upper mantle velocity structure in eastern Tibetan plateau and its surrounding areas. Chinese J. Geophys. (in Chinese), 42(2): 197-205.
[26]  Duan Y H, Lai X L, Zhang X K, et al. 1999. Finite-difference 2-D and 3-D seismic traveltime velocity tomography. North China Earthquake Sciences (in Chinese), 17(4): 53-60.
[27]  Eberhart-Phillips D. 1990. Three-dimensional P and S velocity structure in the Coalinga Region, California. J. Geophys. Res.: Solid Earth, 95(B10): 15343-15363.
[28]  Hole J A. 1992. Nonlinear high-resolution three-dimensional seismic travel time tomography. J. Geophys. Res., 97(B5): 6553-6562.
[29]  Hole J A, Zelt B C.1995. 3-D finite-difference reflection traveltimes. Geophys. J. Int., 121(2): 427-434.
[30]  Kapp P, Murphy M A, Yin A, et al. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4), doi: 10.1029/2001TC001332.
[31]  Karplus M S, Zhao W, Klemperer S L, et al. 2011. Injection of Tibetan crust beneath the south Qaidam Basin: Evidence from INDEPTH IV wide-angle seismic data. J. Geophys. Res., 116(B7): B07301, doi: 10.1029/2010JB007911.
[32]  Kissling E, Ellsworth W L, Eberhart-Phillips D E, et al. 1994. Initial reference models in local earthquake tomography. J. Geophys. Res.: Solid Earth, 99(B10): 19635-19646.
[33]  Kissling E, Solarino S, Cattaneo M. 1995. Improved seismic velocity reference model from local earthquake data in Northwestern Italy. Terra Nova, 7(5): 528-534.
[34]  Lacassin R, Valli F, Arnaud N, et al. 2004. Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet. Earth Planet. Sci. Lett., 219(3-4): 255-269.
[35]  Lan H Q, Zhang Z, Xu T, et al. 2012a. A comparative study on the fast marching and fast sweeping methods in the calculation of first-arrival traveltime field. Progress in Geophys. (in Chinese), 27(5): 1863-1870, doi: 10.6038/j.issn.1004-2903.2012.02.005.
[36]  Lan H Q, Zhang Z, Xu T, et al. 2012b. Effects due to the anisotropic stretching of the surface-fitting grid on the traveltime computation for irregular surface by the coordinate transforming method. Chinese J. Geophys. (in Chinese), 55(10): 3355-3369, doi: 10.6038/j.issn.0001-5733.2012.10.018.
[37]  Li F, Xu T, Wu Z B, et al. 2013. Segmentally iterative ray tracing in 3-D heterogeneous geological models. Chinese J. Geophys. (in Chinese), 56(10): 3514-3522, doi: 10.6038/cjg20131026.
[38]  Li H B, Valli F, Xu Z Q, et al. 2006. Deformation and tectonic evolution of the Karakorum fault, western Tibet. Geology in China (in Chinese), 33(2): 239-255.
[39]  Li H B, Valli F, Liu D Y, et al. 2007. The formation age of the Karakorum Fault in western Tibet: Constraints from SHRIMP U-Pb dating of zircons. Chinese Science Bulletin, 52(4):438-447.
[40]  Li H B, Valli F, Arnaud N, et al. 2008. Rapid uplifting in the process of strike-slip along the Karakorum fault zone in western Tibet: Evidence from 40Ar/39Ar thermochronology. Acta Petrologica Sinica (in Chinese), 24(7): 1552-1556.
[41]  Liu Y F, Lan H Q. 2012. Study on the numerical solutions of the eikonal equation in curvilinear coordinate system. Chinese J. Geophys. (in Chinese), 55(6): 2014-2026, doi: 10.6038/j.issn.0001-5733.2012.06.023.
[42]  Murphy M A, Yin A, Kapp P, et al. 2000. Southward propagation of the Karakoram fault system, southwest Tibet: Timing and magnitude of slip. Geology, 28(5): 451-454.
[43]  Saito H. 1989. Traveltimes and raypaths of first-arrival seismic waves: Computation method based on Huygens'' Principle.//59thAnn. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstract, 244-247.
[44]  Tarantola A, Valette B. 1982. Generalized nonlinear inverse problems solved using the least squares criterion. Rev. Geophys. Space Phys., 20(2): 219-232.
[45]  Teng J W, Zhang Z J, Zhang X K, et al. 2013. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles. Tectonophysics, 609: 202-216, doi: 10.1016/j.tecto.2012.11.024.
[46]  Thurber C H. 1983. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res., 88(B10): 8226-8236.
[47]  Thurber C H, Atre S R. 1993. Three-dimensional VP/VS variations along the Loma Prieta rupture zone. Bull. Seism. Soc. Am., 83(3): 717-736.
[48]  Thybo H, Nielsen C A. 2009. Magma-compensated crustal thinning in continental rift zones. Nature, 457(7231): 873-876, doi: 10.1038/nature07688.
[49]  Valli F, Arnaud N, Leloup P H, et al. 2007. Twenty million years of continuous deformation along the Karakorum fault, western Tibet: a thermochronological analysis. Tectonics, 26(4), doi: 10.1029/2005TC001913.
[50]  Vidale J E. 1988. Finite-difference traveltime calculation. Bull. Seism. Soc. Am., 78: 2062-2076.
[51]  Vidale J E. 1990. Finite-difference calculation of traveltimes in three dimensions. Geophysics, 55(5): 521-526.
[52]  Wagner L S, Beck S, Zandt G. 2005. Upper mantle structure in the south central Chilean subduction zone (30°to 36°S). J. Geophys. Res.: Solid Earth, 110(B1): B01308, doi: 10.1029/2004JB003238.
[53]  Wang C Y, Zhang X K, Ding Z F, et al. 1997. Finite-difference tomography of upper crustal structure in Dabieshan orogenic belt. Chinese J. Geophys. (Acta Geophysica Sinica) (in Chinese), 40(4): 495-502.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133