全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用瑞利激光雷达观测北京地区上平流层地形重力波活动

DOI: 10.6038/cjg20151004, PP. 3481-3486

Keywords: 瑞利激光雷达,地形重力波,山地波

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用中国科学院空间科学与应用研究中心的瑞利激光雷达首次观测到了平流层地形重力波活动的现象,并结合美国国家环境预报中心(NCEP)的全球预报系统(GFS)的风场数据分析了该地形重力波的基本参数.与惯性重力波相比较,地形重力波的密度扰动没有下传的相位,在同一高度上,其扰动相位保持不变.北京空间科学与应用研究中心瑞利激光雷达自2012年开始观测实验以来,已经观测到多起地形重力波活动事件.本文以2013年11月11日的观测数据为例,研究北京上空的地形重力波活动,并结合GFS风场数据分析了北京上平流层地形重力波的波长、传播方向、传播速度等参量.通过分析得到在2013年11月11日北京上空存在一列传播方向为北偏西52.4°,水平波长为5.5km,平均垂直波长约为6.0km的地形重力波.

References

[1]  Alexander M J, Teitelbaum H. 2007. Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula. J. Geophys. Res.,112(D21),doi: 10.1029/2006JD008368.
[2]  Alexander S P, Klekociuk A R, Pitts M C, et al. 2011a. The effect of orographic gravity waves on Antarctic polar stratospheric cloud occurrence and composition. Journal of Geophysical Research: Atmospheres, 116(D6): D06109.
[3]  Alexander S P, Klekociuk A R, Murphy D J. 2011b. Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E). J. Geophys. Res., 116(D13),doi: 10.1029/2010JD015164.
[4]  Chen C. 2010. The preliminary studies on the gravity waves of mid-atmosphere through Rayleigh lidar techniques (in Chinese). Wuhan: University of Science and Technology of China.
[5]  Collins R L, Tao X, Gardner C S. 1996. Gravity wave activity in the upper mesosphere over Urbana, Illinois: lidar observations and analysis of gravity wave propagation models. Journal of Atmospheric & Terrestrial Physics, 58(16): 1905-1926.
[6]  Eckermann S D. 1995. Effect of background winds on vertical wavenumber spectra of atmospheric gravity waves. J. Geophys. Res., 100(D7): 14097-14112.
[7]  Eckermann S D, Wu D L. 2012. Satellite detection of orographic gravity-wave activity in the winter subtropical stratosphere over Australia and Africa. Geophysical Research Letters,39(21),doi: 10.1029/2012GL053791.
[8]  Fritts D C, Alexander M J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics,41(1),doi: 10.1029/2001RG000106.
[9]  Gao X, Meriwether J W, Wickwar V B, et al. 1998. Rayleigh lidar measurements of the temporal frequency and vertical wavenumber spectra in the mesosphere over the Rocky Mountain region. J. Geophys. Res., 103(D6): 6405-6416.
[10]  Hertzog A, Souprayen C, Hauchecorne A. 2001. Measurements of gravity wave activity in the lower stratosphere by Doppler lidar. Journal of Geophysical Research: Atmospheres, 106(D8): 7879-7890.
[11]  Jiang J H, Wu D L. 2001. UARS MLS observations of gravity waves associated with the Arctic winter stratospheric vortex. Geophysical Research Letters, 28(3): 527-530.
[12]  Li T, Leblanc T, McDermid I S, et al. 2010. Seasonal and interannual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii. Journal of Geophysical Research: Atmospheres, 115(D13): D13103.
[13]  Marsh A K P, Mitchell N J, Thomas L. 1991. Lidar studies of stratospheric gravity-wave spectra. Planetary & Space Science, 39(11): 1541-1548.
[14]  Sivakumar V, Rao P B, Bencherif H. 2006. Lidar observations of middle atmospheric gravity wave activity over a low-latitude site (Gadanki, 13.5°N, 79.2°E). Annales Geophysicae, 24(3): 823-834.
[15]  Whiteway J A, Carswell A I. 1995. Lidar observations of gravity wave activity in the upper stratosphere over Toronto. Journal of Geophysical Research: Atmospheres, 100(D7): 14113-14124.
[16]  Wilson R, Chanin M L, Hauchecorne A. 1991. Gravity waves in the middle atmosphere observed by Rayleigh lidar 1. Case studies. J. Geophys. Res., 96(D3): 5153-5167.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133