全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

华南二叠系卡匹敦阶高分辨率浮点年代标尺

DOI: 10.6038/cjg20151023, PP. 3719-3734

Keywords: 磁化率,牙形石,时间序列分析,卡匹敦阶,峨眉山大火成岩省,浮点年代标尺

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于详细的生物地层学研究,以磁化率为古气候替代指标,对广西来宾铁桥剖面卡匹敦阶地层开展时间序列分析,建立高分辨率浮点年代标尺(FPTS).结果表明,磁化率记录了铁桥剖面中二叠世晚期沉积序列中的米兰科维奇旋回,卡匹敦阶上部磁化率突然增加与峨眉山玄武岩喷发和卡匹敦晚期全球性海退有关,这些事件导致同期沉积物中碎屑物质增加.铁桥剖面瓜德鲁普—乐平统界线附近磁化率和蓬莱滩剖面(乐平统底界GSSP)表现出一致的变化趋势,具可对比性.利用多窗谱法(MTM)和傅里叶变换(FT)从磁化率序列中识别出五个米兰科维奇周期:长偏心率周期(E2,405ka)、短偏心率周期(E1,100ka)、长地轴斜率周期(O2,44.1ka)、长岁差周期(P2,20.95ka)和短岁差周期(P1,17.7ka).对比基于E2周期建立的磁性地层磁化率(MSS)带和标准参考带(SRZ),建立整个沉积序列的高分辨率(200ka)FPTS,提出卡匹敦阶的时限为3.85Ma(存在+0~0.28Ma误差),整段沉积序列的平均沉积速率为2.91cm·ka-1.同时计算出卡匹敦阶内部七个牙形石带的时限,从最短26.6ka到最长2.3Ma.另外,估算出峨眉山大火成岩省喷发启动时间为262.67Ma,位于瓜德鲁普—乐平统界线之下1.42Ma.

References

[1]  AliJ R, Thompson G M, Song X Y, et al. 2002. Emeishan Basalts (SW China) and the ''end-Guadalupian’ crisis: magnetobiostratigraphic constraints. Journal of the Geological Society, 159(1): 21-29, doi: 10.1144/0016-764901086.
[2]  Ali J R, Thompson G M, Zhou M F, et al. 2005. Emeishan large igneous province, SW China. Lithos, 79(3-4): 475-489, doi: 10.1016/j.lithos.2004.09.013.
[3]  Bond D P G, Hilton J, Wignall P B, et al. 2010a. The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth-Science Reviews, 102(1-2): 100-116.
[4]  Bond D P G, Wignall P B, Wang W, et al. 2010b. The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(1-2): 282-294.
[5]  Borradaile G J. 1988. Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 156(1-2): 1-20.
[6]  Bowring S A, Erwin D H, Jin Y G, et al. 1998. U/Pb zircon geochronology and tempo of the End-Permian mass extinction. Science, 280 (5366): 1039-1045.
[7]  Burgess S D, Bowring S, Shen S Z. 2014. High-precision timeline for Earth''s most severe extinction. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3316-3321.
[8]  Chen Z Q, George A D, Yang W R. 2009. Effects of Middle-Late Permian sea-level changes and mass extinction on the formation of the Tieqiao skeletal mound in the Laibin area, South China. Australian Journal of Earth Sciences, 56(6): 745-763.
[9]  Clark M A. 2012. Magnetostratigraphy susceptibility correlations for the Guadalupian-Lopingian boundary and the placement of the North American Ochoan series: Texas (USA) and South China. Baton Rouge, LA: Louisiana State University.
[10]  Crick R E, Ellwood B B, El Hassani A, et al. 1997. Magnetosusceptibility event and cyclostratigraphy (MSEC) of the Eifelian-Givetian GSSP and associated boundary sequences in North Africa and Europe. Episodes, 20(3): 167-175.
[11]  Dettinger M D, Ghil M, Strong C M, et al. 1995. Software expedites singular-spectrum analysis of noisy time series. EOS Transactions American Geophysical Union, 76(2): 12-21.
[12]  Dunlop D J, ?zdemir ?. 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge: Cambridge University Press.
[13]  Ellwood B B, Hrouda F, Wagner J J. 1988. Symposia on magnetic fabrics: introductory comments. Physics of the Earth and Planetary Interiors, 51(4): 249-252.
[14]  Ellwood B B, Crick R E, El Hassani A. 1999. The magneto-susceptibility event and cyclostratigraphy (MSEC) method used in geological correlation of Devonian rocks from Anti-Atlas Morocco. AAPG Bulletin, 83(7): 1119-1134.
[15]  Ellwood B B, Crick R E, El Hassani A, et al. 2000. Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks: detrital input versus carbonate productivity. Geology, 28(12): 1135-1138.
[16]  Ellwood B B, Brett C E, Macdonald W D. 2007. Magnetostratigraphy susceptibility of the Upper Ordovician Kope Formation, Northern Kentucky. Palaeogeography, Palaeoclimatology, Palaeoecology, 243(1-2): 42-54.
[17]  Ellwood B B, Tomkin J H, El Hassani A, et al. 2011. A climate-driven model and development of a floating point time scale for the entire Middle Devonian Givetian Stage: a test using magnetostratigraphy susceptibility as a climate proxy. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(1-2): 85-95.
[18]  Ellwood B B, Lambert L L, Tomkin J H, et al. 2012. Magnetostratigraphy susceptibility for the Guadalupian series GSSPs (Middle Permian) in Guadalupe Mountains National Park and adjacent areas in West Texas.//Jovane L, Herrero-Bervera, E, Hinnov L A, et al., eds. Magnetic Methods and the Timing of Geological Processes. Geological Society, London: Special Publications, 373, doi: 10.1144/SP373.1.
[19]  García-Alcalde J L, Ellwood B B, Soto F, et al. 2011. Precise timing of the Upper Taghanic Biocrisis, Geneseo Bioevent, in the Middle—Upper Givetian (Middle Devonian) boundary in Northern Spain using biostratigraphic and magnetic susceptibility data sets. Palaeogeography, Palaeoclimatology, Palaeoecology, 313-314: 26-40, doi: 10.1016/j.palaeo.2011.10.006.
[20]  Ghil M, Allen M R, Dettinger M D, et al. 2002. Advanced spectral methods for climatic time series. Reviews of Geophysics, 40(1): 3-1-3-41, doi: 10.1029/2001RG000092.
[21]  Gong Y M, Du Y S, Tong J N, et al. 2008. Cyclostratigraphy: the third milestone of stratigraphy in understanding time. Earth Science-Journal of China University of Geosciences (in Chinese), 33(4): 443-457.
[22]  Gradstein F M, Ogg J G, Smith A G. 2004. A Geologic Time Scale 2004. Cambridge: Cambridge University Press.
[23]  Gradstein F M, Ogg J G, Schmitz M, et al. 2012. The Geologic Time Scale. Boston: Elsevier.
[24]  Guo G, Tong J N, Zhang S H, et al. 2008. Cyclostratigraphy of the Induan (Early Triassic) in West Pingdingshan Section, Chaohu, Anhui Province. Science in China Series D: Earth Sciences, 51(1): 22-29.
[25]  Hays J D, Imbrie J, Shackleton N J. 1976. Variations in the Earth''s orbit: pacemaker of the ice ages. Science, 194(4270): 1121-1132.
[26]  He B, Xu Y G, Chung S L, et al. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213(3-4): 391-405.
[27]  He B, Xu Y G, Wang Y M, et al. 2006. Sedimentation and lithofacies paleogeography in southwestern China before and after the Emeishan flood volcanism: new insights into surface response to mantle plume activity. The Journal of Geology, 114(1): 117-132.
[28]  He B, Xu Y G, Huang X L, et al. 2007. Age and duration of the Emeishan flood volcanism, SW China: geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters, 255(3-4): 306-323.
[29]  Henderson C M., Mei S L, Wardlaw B R. 2002. New conodont definitions at the Guadalupian-Lopingian boundary.//Hills L V, Henderson C M, Bamber E W Eds. Carboniferous and Permian of the World. Calgary: Canadian Society of Petroleum Geologists, Memoir 19, 725-735.
[30]  Huang C J, Tong J N, Hinnov L, et al. 2011. Did the great dying of life take 700 ky? evidence from global astronomical correlation of the Permian-Triassic boundary interval. Geology, 39(8): 779-782.
[31]  Huang C J. 2014. The current status of cyclostratigraphy and astrochronology in the Mesozoic. Earth Science Frontiers (in Chinese), 21(2): 48-66.
[32]  Jenkins G M, Watts D G. 1968. Spectral Analysis and Its Applications. San Francisco: Holden-Day.
[33]  Jiang H S, Luo G M, Lai X L. 2004. Summary of approaches for conodont separation. Geological Science and Technology Information (in Chinese), 23(4): 109-112.
[34]  Jin Y G, Henderson C M, Wardlaw B R, et al. 2001. Proposal for the Global Stratotype Section and Point (GSSP) for the Guadalupian-Lopingian boundary. Permophiles, 39(3): 32-42.
[35]  Jin Y G, Mei S L, Wang W, et al. 1998. On the Lopingian series of the Permian system. Palaeoworld, 9: 1-18.
[36]  Jin Y G, Shen S Z, Henderson C M, et al. 2006. The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes, 29(4): 253-262.
[37]  Jovane L, Florindo F, Sprovieri M, et al. 2006. Astronomic calibration of the late Eocene/early Oligocene Massignano section (central Italy). Geochemistry, Geophysics, Geosystems, 7: Q07012, doi: 10.1029/2005GC001195.
[38]  Kasuya A, Isozaki Y, Igo H. 2012. Constraining paleo-latitude of a biogeographic boundary in Mid-Panthalassa: fusuline province shift on the Late Guadalupian(Permian) migrating seamount. Gondwana Research, 21(2-3): 611-623.
[39]  Li B, Xue W Q, Yan J X, et al. 2015. Magnetic properties of the Middle-Late Permian carbonates in South China and their environmental significances. Earth Science-Journal of China University of Geosciences (in Chinese), 40(7): 1226-1236.
[40]  Liu C Y, Zhu R X. 2009. Geodynamic significances of the Emeishan Basalts. Earth Science Frontiers, 16(2): 52-69.
[41]  Mei S L, Jin Y G, Wardlaw B R. 1998. Conodont succession of the Guadalupian-Lopingian boundary strata in Laibin of Guangxi, China and West Texas, USA. Palaeoworld, 9: 53-57.
[42]  Ogg J G, Ogg G, Gradstein F M. 2008. The Concise Geologic Time Scale. Cambridge: Cambridge University Press.
[43]  Qiu Z, Wang Q C, Zou C N, et al. 2014. Transgressive-regressive sequences on the slope of an isolated carbonate platform (Middle-Late Permian, Laibin, South China). Facies, 60(1): 327-345.
[44]  Sha Q A, Wu W S, Fu J M. 1990. An Integrated Investigation on the Permian System of Qin-Gui Areas, with Discussion on the Hydrocarbon Potential (in Chinese). Beijing: Science Press.
[45]  Shaw A B. 1964. Time in Stratigraphy. New York: McGraw-Hill.
[46]  Shen S Z, Wang Y, Henderson C M, et al. 2007. Biostratigraphy and lithofacies of the Permian System in the Laibin-Heshan area of Guangxi, South China. Palaeoworld, 16(1-3): 120-139.
[47]  Sun Y D, Lai X L, Wignall P B, et al. 2010. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. Lithos, 119(1-2): 20-33.
[48]  Wang Y, Jin Y G. 2000. Permian palaeogeographic evolution of the Jiangnan Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(1-2): 35-44.
[49]  Weedon G P. 2003. Time-series Analysis and Cyclostratigraphy: examining Stratigraphic Records of Environmental Cycles. Cambridge: Cambridge University Press.
[50]  Wignall P B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2): 1-33.
[51]  Wignall P B, Sun Y D, Bond D P G, et al. 2009a. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, 324(5931): 1179-1182.
[52]  Wignall P B, Védrine S, Bond D P G, et al. 2009b. Facies analysis and sea-level change at the Guadalupian-Lopingian Global Stratotype (Laibin, South China), and its bearing on the end-Guadalupian mass extinction. Journal of the Geological Society, 166(4): 655-666.
[53]  Wignall P B, Bond D P G, Haas J, et al. 2012. Capitanian (Middle Permian) mass extinction and recovery in western Tethys: a fossil, facies, and δ13C study from Hungary and Hydra island (Greece). Palaios, 27(2): 78-89.
[54]  Wu H C, Zhang S H, Feng Q L, et al. 2011. Theoretical basis, research advancement and prospects of cyclostratigraphy. Earth Science-Journal of China University of Geosciences (in Chinese), 36(3): 409-428.
[55]  Wu H C, Zhang S H, Feng Q L, et al. 2012. Milankovitch and sub-Milankovitch cycles of the early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications. Gondwana Research, 22(2): 748-759.
[56]  Wu H C, Zhang S H, Hinnov L A, et al. 2013a. Time-calibrated Milankovitch cycles for the late Permian. Nature Communications, 4: 2452, doi: 10.1038/ncomms3452.
[57]  Wu H C, Zhang S H, Jiang G Q, et al. 2013b. Astrochronology for the Early Cretaceous Jehol Biota in northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 221-228, doi: 10.1016/j.palaeo.2013.05.017.
[58]  Wu H C, Zhang S H, Jiang G Q, et al. 2013c. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 55-70, doi: 10.1016/j.palaeo.2012.09.004.
[59]  Yao Y, Yan J X, Li A Z. 2012. Sedimentary features and evolution of Mid-Permian carbonates from Laibin of Guangxi. Earth Science-Journal of China University of Geosciences (in Chinese), 37(S2): 184-194.
[60]  Zheng H R, Hu Z Q. 2010. Chinese pre-Mesozoic Tectonic: Atlas of Lithofacies and Paleogeography (in Chinese). Beijing: Geologic Publishing House.
[61]  Zhou M F, Malpas J, Song X Y, et al. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters, 196(3-4): 113-122.
[62]  Ziegler A M, Hulver M L, Rowley D B. 1997. Permian world topography and climate.//Martini I P ed. Late Glacial and Postglacial Environmental Changes-Quaternary, Carboniferous-Permian, and Proterozoic. New York: Oxford University Press, 111-146.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133