Gudmundsson A. 2004. Effects of Young''s modulus on fault displacement. Comptes Rendus Geoscience, 336(1): 85-92.
[2]
Hu C B, Zhou Y J, Cai Y E. 2009. A new finite element model in studying earthquake triggering and continuous evolution of stress field. Sci. China Ser. D-Earth Sci., 52(7): 994-1004, doi: 10.1007/S11430-009-0082-3.
[3]
Ide S, Baltay A, Beroza G C. 2011. Shallow dynamic overshoot and energetic deep rupture in the 2011 MW9.0 Tohoku-Oki earthquake. Science, 332(6036): 1426-1429, doi: 10.1126/science.1207020.
[4]
Kanamori H. 1977. The energy release in great earthquakes. J. Geophys. Res., 82(20): 2981-2876.
[5]
Lay T, Ammon C J, Kanamori H, et al. 2011. Possible large near-trench slip during the 2011 Mw9.0 off the Pacific coast of Tohoku earthquake. Earth, Planets and Space, 63(7): 687-692.
[6]
Li Y G, Vidale J E, Day S M, et al. 2002. Study of the 1999 M7.1 Hector Mine, California, earthquake fault plane by trapped waves. Bull. Seismol. Soc. Am., 92(4): 1318-1332.
[7]
Mondol N H, Bj?rlykke K, Jahren J, et al. 2007. Experimental mechanical compaction of clay mineral aggregates-Changes in physical properties of mudstones during burial. Marine and Petroleum Geology, 24(5): 289-311.
[8]
Rhea S, Tarr A C, Hayes G P, et al. 2010. Seismicity of the Earth 1900-2007, Japan and vicinity. U. S. Geological Survey, Open-File Report 2010-1083-D.
[9]
Scholz C H. 1990. The Mechanics of Earthquakes and Faulting. New York: Cambridge University Press.
[10]
Simons M, Minson S E, Sladen A, et al. 2011. The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science, 332(6036): 1421-1425, doi: 10.1126/science.1206731.
[11]
Wang K L, Kinoshita M. 2013. Dangers of being thin and weak. Science, 342(6163): 1178-1180, doi: 10.1126/science.1246518.
[12]
Yamazaki Y, Lay T, Cheung K F, et al. 2011. Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake. Geophys. Res. Lett., 38(7): L00G15, doi: 10.1029/2011GL049130.
[13]
Yin Y Q. 2014. Plastic Mechanics of Rock-Like Materials (in Chinese). Beijing: Peking University Press.
[14]
Yin Y Q, Zhang H. 1982. A mathematical model of strain softening in simulating earthquake. Chinese J.Geophys.(Acta Geophysica Sinica) (in Chinese), 25(5): 414-423.
[15]
Yoshida K, Miyakoshi K, Irikura K. 2011. Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records. Earth, Planets and Space, 63(7): 577-582.
[16]
Yue H, Lay T. 2011. Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (MW9.1). Geophys. Res. Lett., 38(7): L00G09, doi: 10.1029/2011GL048700.
[17]
Zhang Y, Xu L S, Chen Y T. 2012. Rupture process of the 2011 Tohoku earthquake from the joint inversion of teleseismic and GPS data. Earthq. Sci., 25(2): 129-135, doi: 10.1007/s11589-012-0839-1.
[18]
Aki K. 1966. Generation and propagation of G waves from the Niigata earthquake of June 14, 1964. Part 2. Estimation of earthquake moment, released energy, and stress-strain drop from G-waves spectrum. Bulletin of the Earthquake Research Institute, 44: 73-88.
[19]
Caine J S, Evans J P, Forster C B. 1996. Fault zone architecture and permeability structure. Geology, 24(11): 1025-1028.
[20]
Chester F M, Rowe C, Ujiie K, et al. 2013. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake. Science, 342(6163): 1208-1211, doi: 10.1126/science.1243719.
[21]
Duan B C. 2012. Dynamic rupture of the 2011 MW9.0 Tohoku-Oki earthquake: Roles of a possible subducting seamount. J. Geophys. Res., 117: B05311, doi: 10.1029/2011JB009124.
[22]
Fujiwara T, Kodaira S, No T, et al. 2011. The 2011 Tohoku-Oki earthquake: displacement reaching the trench axis. Science, 334(6060): 1240, doi: 10.1126/science.1211554.