全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

顾及多方向观测值权比反演地球重力场的动力积分法

DOI: 10.6038/cjg20150904, PP. 3061-3071

Keywords: 动力积分法,加权,GOCE,地球重力场

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑到不同坐标系下各个方向观测值对反演地球重力场的频谱贡献不同,建立了顾及多方向观测值权比的动力积分法,并利用该方法反演了高精度的GOCEHL-SST卫星重力场模型.首先,分析了不同坐标系下各个方向观测值与地球重力场信息的响应关系,其中惯性系(IRF)下X、Z方向的观测值分别对扇谐系数、带谐系数最为敏感,Z方向的解算精度在全频段均略高于X、Y方向;地固系(EFRF)下各个方向的独立解算精度均与能量守恒法的解算精度相当;局部指北坐标系(LNOF)下X、Z和Y三个方向的解算精度依次递减,且Y方向在47阶附近有明显"驼峰"现象.其次,比较了不同坐标系下顾及三个方向观测值权比的加权解算模型,其中加权联合解算模型精度在20至70阶次均明显优于等权解算模型,在带谐项和共振阶次精度提升明显,且LNOF下的加权联合解算精度要优于IRF和EFRF.最后,比较了GOCE和CHAMP卫星的模型解算精度,采用本文计算方法,仅利用2个月GOCE轨道观测值解算的模型精度优于包含更长观测时段信息的AIUB-CHAMP01S和EIGEN-CHAMP03S模型,且略优于ASU-GOCE-2months模型.

References

[1]  Frommknecht B, Lamarre D, Meloni M, et al. 2011. GOCE level 1b data processing. Journal of Geodesy, 85(11): 759-775.
[2]  Gruber T, Rummel R, Abrikosov O, et al. 2010. GOCE level 2 product data handbook. GO-MA-HPF-GS-0110.
[3]  Huang Q, Fan D M, You W. 2013. Recovery of earth''s gravitational field model based on GOCE satellite orbits. Geomatics and Information Science of Wuhan University (in Chinese), 38(8): 907-910.
[4]  Huang Q, Fan D M. 2012. The average acceleration approach applied to gravity coefficients recovery based on GOCE orbits. Geodesy and Geodynamics, 3(4): 18-22.
[5]  Jackson D D. 1972. Interpretation of inaccurate, insufficient and inconsistent data. Geophysical Journal International, 28(2): 97-109.
[6]  J?ggi A, Dach R, Montenbruck O, et al. 2009. Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. Journal of Geodesy, 83(12): 1145-1162.
[7]  J?ggi A, Bock H, Prange L, et al. 2011a. GPS-only gravity field recovery with GOCE, CHAMP, and GRACE. Advances in Space Research, 47(6): 1020-1028.
[8]  J?ggi A, Prange L, Hugentobler U. 2011b. Impact of covariance information of kinematic positions on orbit reconstruction and gravity field recovery. Advances in Space Research, 47(9): 1472-1479.
[9]  J?ggi A, Bock H, Meyer U, et al. 2015. GOCE: assessment of GPS-only gravity field determination. Journal of Geodesy, 89(1): 33-48.
[10]  Jekeli C. 1999. The determination of gravitational potential differences from satellite-to-satellite tracking. Celestial Mechanics and Dynamical Astronomy, 75(2): 85-101.
[11]  Kloko?ník J, Gooding R H, Wagner C A, et al. 2013. The use of resonant orbits in satellite geodesy: a review. Surveys in Geophysics, 34(1): 43-72.
[12]  Luo Z C, Zhou H, Zhong B, et al. 2013. Analysis and validation of Gauss-Jackson integral algorithm. Geomatics and Information Science of Wuhan University (in Chinese), 38(11): 1364-1368.
[13]  Baur O, Reubelt T, Weigelt M, et al. 2012. GOCE orbit analysis: Long-wavelength gravity field determination using the acceleration approach. Advances in Space Research, 50(3): 385-396.
[14]  Baur O, Bock H, H?ck E, et al. 2014. Comparison of GOCE-GPS gravity fields derived by different approaches. Journal of Geodesy, 88(10): 959-973.
[15]  Bezděk A, Sebera J, Kloko?ník J, et al. 2014. Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites. Advances in Space Research, 53(3): 412-429.
[16]  Bock H, J?ggi A, Meyer U, et al. 2011. GPS-derived orbits for the GOCE satellite. Journal of Geodesy, 85(11): 807-818.
[17]  Bruinsma S L, F?rste C, Abrikosov O, et al. 2013. The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 40(14): 3607-3612.
[18]  McCarthy D D, Petit G. 2004. IERS conventions (2003). International Earth Rotation and Reference Systems Service, GERMANY.
[19]  Pail R, Bruinsma S, Migliaccio F, et al. 2011. First GOCE gravity field models derived by three different approaches. Journal of Geodesy, 85(11): 819-843.
[20]  Su Y, Fan D M. 2013. Gravity field recovery from GOCE orbits using the energy conservation approach. Geodesy and Geodynamics, 4(2): 40-46.
[21]  Visser P N A M, van der Wal W, Schrama E J O, et al. 2014. Assessment of observing time-variable gravity from GOCE GPS and accelerometer observations. Journal of Geodesy, 88(11): 1029-1046.
[22]  Wan X Y, Yu J H, Zeng Y Y, et al. 2012. Frequency analysis and filtering processing of gravity gradients data from GOCE. Chinese J. Geophys. (in Chinese), 55(9): 2909-2916, doi: 10.6038/j.issn.0001-5733.2012.09.010.
[23]  Wang X X. 2011. Time-variable gravity field determination from satellite constellations. Technische Universitt München.
[24]  Wang Z T. 2005. Theory and methodology of earth gravity field recovery by satellite-to-satellite tracking data (in Chinese). Wuhan: Wuhan University.
[25]  Xiao Y. 2006. Research on the earth gravity field recovery from satellite-to-satellite tracking data (in Chinese). Zhengzhou: PLA Information Engineering University.
[26]  Yi W Y, Rummel R, Gruber T. 2013. Gravity field contribution analysis of GOCE gravitational gradient components. Studia Geophysica et Geodaetica, 57(2): 174-202.
[27]  You W. 2011. Theory and methodology of earth''s gravitational field model recovery by LEO data (in Chinese). Chengdu: Southwest Jiaotong University.
[28]  You W, Fan D M, He Q B. 2012. Recovering earth''s gravitational field model using GOCE satellite orbits. Geomatics and Information Science of Wuhan University (in Chinese), 37(3): 294-297.
[29]  Zhang X F. 2007. The earth''s field model recovery on the basis of satellite-to-satellite tracking missions (in Chinese). Shanghai: Tongji University.
[30]  Zheng W, Shao C G, Luo J, et al. 2006. Numerical simulation of Earth''s gravitational field recovery from SST based on the energy conservation principle. Chinese J. Geophys. (in Chinese), 49(3): 712-717.
[31]  Zheng W, Hsu H T, Zhong M, et al. 2011. Accurate and rapid determination of GOCE Earth''s gravitational field using time-space domain method associated with Kaula regularization. Chinese J. Geophys. (in Chinese), 54(1): 14-21, doi: 10.3969/j.issn.0001-5733.2011.01.003.
[32]  Zheng W. 2015. Theory and Approach of Satellite Gravity Inversion on the Basis of Energy Balance Principle (in Chinese). Beijing: Science Press.
[33]  Zhong B. 2010. Study on the determination of the earth''s gravity field from satellite gravimetry mission GOCE (in Chinese). Wuhan: Wuhan University.
[34]  Zhong B, Luo Z C, Zhou H. 2013. Gravity field recovery using satellite average accelerations derived from high-low satellite-to-satellite tracking. Geomatics and Information Science of Wuhan University (in Chinese), 38(8): 902-906.
[35]  Zhou H, Zhong B, Luo Z C, et al. 2011. Application of parallel algorithms based on OpenMP to satellite gravity field recovery. Journal of Geodesy and Geodynamics (in Chinese), 31(5): 123-127.
[36]  Zhou H, Luo Z C, Zhong B, et al. 2015. MPI parallel algorithm in satellite gravity field model inversion on the basis of least square method. Acta Geodaetica et Cartographica Sinica (in Chinese), 44(8): 833-839.
[37]  Zhou H, Luo Z C, Zhong B, et al. 2014. A simulation study of Earth gravity field model inversion from SWARM mission. EGU General Assembly Conference Abstracts, 16: 5888.
[38]  Zhou X H. 2005. Study on satellite gravity and its application (in Chinese). Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Sciences.
[39]  Zou X C. 2007. Theory of satellite orbit and earth gravity field determination (in Chinese). Wuhan: Wuhan University.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133