全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国平均降水和极端降水对气候变暖的响应:CMIP5模式模拟评估和预估

DOI: 10.6038/cjg20150903, PP. 3048-3060

Keywords: 全球变暖,CMIP5,降水,极端降水,区域响应

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于24个CMIP5全球耦合模式模拟结果,分析了中国区域年平均降水和ETCCDI强降水量(R95p)、极端强降水量(R99p)对增暖的响应.定量分析结果显示,CMIP5集合模拟的当代中国区域平均降水对增温的响应较观测偏弱,而极端降水的响应则偏强.对各子区域气温与平均降水、极端降水的关系均有一定的模拟能力,并且极端降水的模拟好于平均降水.RCP4.5和RCP8.5情景下,随着气温的升高,中国区域平均降水和极端降水均呈现一致增加的趋势,中国区域平均气温每升高1℃,平均降水增加的百分率分别为3.5%和2.4%,R95p增加百分率为11.9%和11.0%,R99p更加敏感,分别增加21.6%和22.4%.就各分区来看,当代的区域性差异较大,未来则普遍增强,并且区域性差异减小,在持续增暖背景下,中国及各分区极端降水对增暖的响应比平均降水更强,并且越强的极端降水敏感性越大.未来北方地区平均降水对增暖的响应比南方地区的要大,青藏高原和西南地区的R95p和R99p增加最显著,表明未来这些区域发生暴雨和洪涝的风险将增大.

References

[1]  Moss R H, Edmonds J A, Hibbard K A, et al. 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747-756.
[2]  National Report Committee. 2011. China''s National Assessment Report on Climate Change (in Chinese). Beijing: Science Press.
[3]  Phillips T J, Gleckler P J. 2006. Evaluation of continental precipitation in 20th century climate simulations: the utility of multimodel statistics. Water Resources Research, 42(3): W03202, doi: 10.1029/2005WR004313.
[4]  Qian W H, Fu J L, Yan Z W. 2007. Decrease of light rain events in summer associated with a warming environment in China during 1961-2005. Geophys. Res. Lett., 34: L11705, doi: 10.1029/2007GL029631.
[5]  Sui Y, Lang X M, Jiang D B. 2014. Time of emergence of climate signals over China under the RCP4.5 scenario. Climatic Change, 125(2): 265-276, doi: 10.1007/s10584-014-1151-y.
[6]  Sun J Q, Wang H J, Yuan W, et al. 2010. Spatial-temporal features of intense snowfall events in China and their possible change. J. Geophys Res., 115: D16110.
[7]  Sun J Q, Ao J. 2013. Changes in precipitation and extreme precipitation in a warming environment in China. Chinese Sci. Bull., 58(12): 1395-1401, doi: 10.1007/s11434-012-5542-z.
[8]  Taylor K E, Stouffer B J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93(4): 485-498.
[9]  Trenberth K E, Fasullo J, Smith L. 2005. Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24(7-8): 741-758.
[10]  Wang H J, Sun J Q, Chen H P, et al. 2012. Extreme climate in China: Facts, simulation and projection. Meteorol. Z., 21(3): 279-304.
[11]  Wentz F J, Ricciardulli L, Hilburn K, et al. 2007. How much more rain will global warming bring. Science, 317(5835): 233-235.
[12]  Wu J, Gao X J. 2013. A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics (in Chinese), 56(4): 1102-1111, doi: 10.6038/cjg20130406.
[13]  Wu J, Gao X J, Xu Y L, et al. 2015. Regional climate change and uncertainty analysis based on four regional climate model simulations over China. Atmos. Oceanic Sci. Lett., 8(3): 147-152, doi: 10.3878/AOSL20150013.
[14]  Xu C H, Shen X Y, Xu Y. 2007. An analysis of climate change in East Asia by using the IPCC AR4 simulations. Advances in Climate Change Research (in Chinese), 3(5): 287-292.
[15]  Xu C H, Xu Y. 2012. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmos. Oceanic Sci. Lett., 5(6): 527-533.
[16]  Xu J Y, Shi Y, Gao X J, et al. 2013. Projected changes in climate extremes over China in the 21st century from a high resolution regional climate model (RegCM3). Chinese Sci. Bull., 58(12): 1443-1452, doi: 10.1007/s11434-012-5548-6.
[17]  Xu Y, Gao X J, Giorgi F. 2009a. Regional variability of climate change hot-spots in East Asia. Adv. Atmos. Sci., 26(4): 783-792.
[18]  Xu Y, Xu C H, Gao X J, et al. 2009b. Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century. Quater. Int., 208(1-2): 44-52.
[19]  Xu Y, Gao X J, Shen Y, et al. 2009c. A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 26(4): 763-772.
[20]  Yang K Q, Jiang D B. 2014. Recent change of the South Asian High. Atmos. Oceanic Sci. Lett., 7(4): 330-333, doi: 10.3878/j.issn.1674-2834.14.0003.
[21]  Ye B S, Chen P, Yang D Q, et al. 2008. Effects of the bias-correction on changing tendency of precipitation over China. Journal of Glaciology and Geocryology (in Chinese), 30(5): 717-725.
[22]  Zhai P M, Zhang X B, Wan H, et al. 2005. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18(7): 1096-1108.
[23]  Zhao P, Yang S, Yu R C. 2010. Long-term changes in rainfall over eastern China and large-scale atmospheric circulation associated with recent global warming. J. Climate, 23(6): 1544-1562.
[24]  Zhou B T, Wen Q H, Xu Y, et al. 2014. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Climate, 27(17): 6591-6611.
[25]  Meehl G A, Stocker T F, Collins W D, et al. 2007. Climate change 2007: The physical science basis.//Solomon S, Qin D, Manning M, et al., eds. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press, 1-18.
[26]  Chen H P. 2013. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chinese Sci. Bull., 58(12): 1462-1472, doi: 10.1007/s11434-012-5612-2.
[27]  Chen H P, Sun J Q. 2014. Sensitivity of climate changes to CO2 emissions in China. Atmos. Oceanic Sci. Lett., 7(5): 422-427, doi: 10.3878/j.issn.1674-2834.14.0028.
[28]  Chen X C. 2014. Assessment of the precipitation over China simulated by CMIP5 multi-models (in Chinese). Beijing: Chinese Academy of Meteorological Science.
[29]  Gao X J, Shi Y, Zhang D F, et al. 2012. Uncertainties in monsoon precipitation projections over China: Results from two high-resolution RCM simulations. Climate Res., 52: 213-226, doi: 10.3354/cr01084.
[30]  Gao X J, Wang M L, Giorgi F. 2013. Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0. Atmos. Oceanic Sci. Lett., 6(5): 381-386, doi: 10.3878/j.issn.1674-2834.13.0029.
[31]  Huang Y Y, Wang H J, Fan K. 2014. Improving the prediction of the Summer Asian-Pacific oscillation using the interannual increment approach. J. Climate, 27(21): 8126-8134, doi: 10.1175/JCLI-D-14-00209.1.
[32]  Huang Y Y, Wang H J, Fan K, et al. 2015. The western Pacific subtropical high after the 1970s: westward or eastward shift?. Climate Dyn., 44(7-8): 2035-2047, doi: 10.1007/s00382-014-2194-5.
[33]  IPCC. 2013. Climate change 2013: the physical science basis.//Stocker T F, Qin D H, Plattner G K, et al. eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1535.
[34]  Jiang D B, Wang H J, Lang X M. 2005. Evaluation of East Asian climatology as simulated by seven coupled models. Advances in Atmospheric Sciences, 22(4): 479-495.
[35]  Jiang D B, Zhang Y, Sun J Q. 2009. Ensemble projection of 1~3 ℃ warming in China. Chinese Sci. Bull., 54(18): 3326-3334.
[36]  Lambert F H, Stine A R, Krakauer N Y, et al. 2008. How much will precipitation increase with global warming. EOS, 89(21): 193-200.
[37]  Lang X M, Sui Y. 2013. Changes in mean and extreme climates over China with a 2 ℃ global warming. Chinese Science Bulletin, 58(12): 1453-1461.
[38]  Li H M, Feng L, Zhou T J. 2011. Multi-model projection of July-August climate extreme changes over China under CO2 doubling. Part I: Precipitation. Adv. Atmos. Sci., 28(2): 433-447.
[39]  Li Z, Yan Z W. 2010. Application of multiple analysis of series for homogenization to Beijing daily temperature series (1960—2006). Adv. Atmos. Sci., 27(4): 777-787.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133