全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磁暴期间热层大气密度变化

DOI: 10.6038/cjg20150901, PP. 3023-3037

Keywords: 热层大气密度,磁暴,CHAMP卫星,半球不对称性,地方时和纬度依赖,时延

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于CHAMP卫星资料,分析了2002—2008年267个磁暴期间400km高度大气密度变化对季节、地方时与区域的依赖以及时延的统计学特征,得到暴时大气密度变化的一些新特点,主要结论如下:1)两半球大气密度绝对变化(δρa)结果在不同强度磁暴、不同地方时不同.受较强的焦耳加热和背景中性风共同作用,在北半球夏季,中等磁暴过程中夜侧和大磁暴中,夏半球的δρa强于冬半球;由于夏季半球盛行风环流造成的扰动传播速度快,北半球夏季日侧30°附近大气,北(夏)半球到达峰值的时间早于南(冬)半球.而可能受半球不对称背景磁场强度所导致的热层能量输送率影响,北半球夏季强磁暴和中磁暴个例的日侧,南半球δρa强于北半球;春秋季个例中日侧30°附近大气,北半球先于南半球1~2h达到峰值.2)受叠加在背景环流上的暴时经向环流影响,春秋季暴时赤道大气密度达到峰值的时间最短,日/夜侧大气分别在Dstmin后1h和2h达到峰值.至点附近夜侧赤道大气达到峰值时间一致,为Dstmin后3h;不同季节日侧结果不同,在北半球冬季时赤道地区经过更长的时间达到峰值.3)日侧赤道峰值时间距离高纬度峰值时间不受季节影响,为3h左右.在春秋季和北半球冬季夜侧,赤道大气密度先于高纬度达到峰值,且不同纬度大气密度的峰值几乎无差别,表明此时低纬度存在其他加热源起着重要作用.

References

[1]  Ahn B H, Akasofu S I, Kamide Y. 1983. The joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL. J. Geophys. Res., 88(A8): 6275-6287, doi: 10.1029/JA088iA08p06275.
[2]  Bruinsma S, Forbes J M, Nerem R S, et al. 2006. Thermosphere density response to the 20—21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J. Geophys. Res., 111: A06303, doi: 10.1029/2005JA011284.
[3]  Burke W J, Huang C Y, Marcos F A, et al. 2007. Interplanetary control of thermospheric densities during large magnetic storms. J. Atmos. Solar-Terr. Phys., 69(3): 279-287.
[4]  Burns A G, Killeen T L, Wang W, et al. 2004. The solar-cycle-dependent response of the thermosphere to geomagnetic storms. J. Atmos. Terr. Phys., 66(1): 1-14.
[5]  Chen G M, Xu J Y, Wang W B, et al. 2012. A comparison of the effects of CIR- and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits: Case studies. J. Geophys. Res., 117: A08315, doi: 10.1029/2012JA017782.
[6]  Deng Y, Huang Y S, Lei J H, et al. 2011. Energy input into the upper atmosphere associated with high-speed solar wind streams in 2005. J. Geophys. Res., 116: A05303, doi: 10.1029/2010JA016201.
[7]  Ercha A, Ridley A J, Zhang D H, et al. 2012. Analyzing the hemispheric asymmetry in the thermospheric density response to geomagnetic storms. J. Geophys. Res., 117: A08317, doi: 10.1029/2011JA017259.
[8]  Forbes J M, Garrett H B. 1976. Solar diurnal tide in the thermosphere. J. Atmos. Sci., 33(11): 2226-2241.
[9]  Forbes J M, Lu G, Bruinsma S, et al. 2005. Thermosphere density variations due to the 15—24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J. Geophys. Res., 110: A12S27, doi: 10.1029/2004JA010856.
[10]  Foster J C, St-Maurice J-P, Abreu V J. 1983. Joule heating at high latitudes. J. Geophys. Res., 88(A6): 4885-4897, doi: 10.1029/JA088iA06p04885.
[11]  Fuller-Rowell T J, Codrescu M V, Codrescu H, et al. 1996. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res., 101(A2): 2343-2353.
[12]  Fuller-Rowell T J. 1998. The ''thermospheric spoon'': A mechanism for the semiannual density variation. J. Geophys. Res., 103(A3): 3951-3956.
[13]  Gonzalez W D, Tsurutani B T, de Gonzalez A L C. 1999. Interplanetary origin of geomagnetic storms. Space Sci. Rev., 88(3-4): 529-562.
[14]  Guo J P, Feng X S, Forbes J M, et al. 2010. On the relationship between thermosphere density and solar wind parameters during intense geomagnetic storms. J. Geophys. Res., 115: A12335, doi: 10.1029/2010JA015971.
[15]  Kwak Y S, Richmond A D, Deng Y, et al. 2009. Dependence of the high-latitude thermospheric densities on the interplanetary magnetic field. J. Geophys. Res., 114: A05304, doi: 10.1029/2008JA013882.
[16]  Lei J H, Thayer J P, Forbes J M, et al. 2008. Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23. J. Geophys. Res., 113: A11303, doi: 10.1029/2008JA013433.
[17]  Lei J H, Thayer J P, Burns A G, et al. 2010. Wind and temperature effects on thermosphere mass density response to the November 2004 geomagnetic storm. J. Geophys. Res., 115: A05303, doi: 10.1029/2009JA014754.
[18]  Lei J H, Thayer J P, Wang W B, et al. 2011. Impact of CIR storms on thermosphere density variability during the solar minimum of 2008. Sol. Phys., 274(1-2): 427-437, doi: 10.1007/s11207-010-9563-y.
[19]  Liu H, Lühr H. 2005. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J. Geophys. Res., 110: A09S29, doi: 1011029P2004JA010908.
[20]  Liu H, Lühr H, Henize V, et al. 2005. Global distribution of the thermospheric total mass density derived from CHAMP. J. Geophys. Res., 110: A04301, doi: 1029P2004JA010741.
[21]  Liu J, Liu L B, Zhao B Q, et al. 2012. Superposed epoch analyses of thermospheric response to CIRs: Solar cycle and seasonal dependencies. J. Geophys. Res., 117: A00L10, doi: 10.1029/2011JA017315.
[22]  Liu R, Lühr H, Doornbos E, et al. 2010. Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field. Ann. Geophys., 28(9): 1633-1645, doi: 10.5194/angeo-28-1633-2010.
[23]  Lu G, Richmond A D, Emery B A, et al. 1995. Magnetosphere-ionosphere-thermosphere coupling: Effect of neutral winds on energy transfer and field-aligned current. J. Geophys. Res., 100(A10): 19643-19659.
[24]  Lu, G, Bake D N, McPherron R L, et al. 1998. Global energy deposition during the January 1997 magnetic cloud event. J. Geophys. Res., 103(A6): 11685-11694, doi: 10.1029/98JA00897.
[25]  Müller S, Lühr H, Rentz S. 2009. Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP. Ann. Geophys., 27(5): 2087-2099.
[26]  Olsson A, Janhunen P, Karlsson T, et al. 2004. Statistics of Joule heating in the auroral zone and polar cap using Astrid-2 satellite Poynting flux. Ann. Geophys., 22(12): 4133-4142, doi: 10.5194/angeo-22-4133-2004.
[27]  Qian L Y, Solomon S C, Kane T J. 2009. Seasonal variation of thermospheric density and composition. J. Geophys. Res., 114: A01312, doi: 10.1029/2008JA013643.
[28]  Richmond A D, Kamide Y, Akasofu S I, et al. 1990. Global measures of ionospheric electrodynamic activity inferred from combined incoherent scatter radar and ground magnetometer observations. J. Geophys. Res., 95(A2): 1061-1071, doi: 10.1029/JA095iA02p01061.
[29]  Roble R G, Dickinson R E, Ridley E C, et al. 1979. Thermospheric response to the November 8-9, 1969, magnetic disturbances. J. Geophys. Res., 84(A8): 4207-4216.
[30]  Srivastava N, Venkatakrishnan P. 2004. Solar and interplanetary sources of major geomagnetic storms during 1996—2002. J. Geophys. Res., 109: A10103, doi: 10.1029/2003JA010175.
[31]  Sutton E K, Forbes J M, Nerem R S. 2005. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J. Geophys. Res., 110: A09S40, doi: 10.1029/2004JA010985.
[32]  Wang H, Mao D D, Ma S Y, et al. 2010. Substorm time ionospheric field-aligned currents as observed by CHAMP. Chinese J. Geophys. (in Chinese), 53(6): 1256-1262, doi: 10.3969/j.issn.0001-5733.2010.06.002.
[33]  Wilson G R, Weimer D R, Wise J O, et al. 2006. Response of the thermosphere to Joule heating and particle precipitation. J. Geophys. Res., 111: A10314, doi: 10.1029/2005JA011274.
[34]  Xu W Y. 2009. Yesterday, today and tomorrow of geomagnetic indices. Progress in Geophys. (in Chinese), 24(3): 830-841.
[35]  Zhou Y L, Ma S Y, Lühr H, et al. 2007. Changes of thermospheric mass density and their relations with Joule heating and ring current index during Nov. 2003 superstorm-CHAMP observations. Chinese J. Geophys. (in Chinese), 50(4): 986-994.
[36]  Zhou Y L, Ma S Y, Lühr H, et al. 2009. An empirical relation to correct storm-time thermospheric mass density modeled by NRLMSISE-00 with CHAMP satellite air drag data. Adv. Space Res., 43(5): 819-828.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133