全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于双相介质理论的储层参数反演方法

DOI: 10.6038/cjg20150934, PP. 3424-3438

Keywords: 双相介质,储层参数,反演,岩石物理模型,贝叶斯框架

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统基于单相介质理论的储层参数反演方法将孔隙流体与固体骨架等效为单一固体,弱化了孔隙流体的影响,反演结果精度不高.本文提出根据双相介质理论反演储层参数的方法.首先,在前人研究的基础上,利用岩石物理模型建立弹性参数与孔隙度、饱和度、泥质含量等储层参数间的关系,进而将双相介质反射系数推导为储层参数的函数;其次,根据贝叶斯反演理论,在高斯噪声假设的基础上,采用更加符合实际情况的修正柯西分布函数描述反射系数的稀疏性,推导出储层物性参数目标反演函数;最后,应用差分进化非线性全局寻优算法来求解目标反演函数,使得反演结果与实际资料间误差最小.新方法旨在突出流体对介质反射系数的影响,以期得到较高的储层参数反演精度.模型与实际资料测试均表明该方法可行、有效且反演精度较高.

References

[1]  Avseth P, Mukerji T, Mavko G. 2005. Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge: Cambridge University Press.
[2]  Berryman J G, Wang H F. 1995. The elastic coefficients of double-porosity models for fluid transport in jointed rock. Journal of Geophysical Research Solid Earth, 100(B12): 24611-24627.
[3]  Biot M A. 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range.J. Acoust.Soc.Am., 28(2): 168-178.
[4]  Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33(4): 1482-1498.
[5]  Brie A, Pampuri F, Marsala A F, et al. 1995. Shear sonic interpretation in gas-bearing sands.//SPE Annual Technical Conference & Exhibition. Dallas, Texas: SPE, 701-710.
[6]  Downton J E. 2005. Seismic parameter estimation from AVO inversion. Calgary: University of Calgary.
[7]  Gao J H, Liu Q X, Yong X S, et al. 2007. The method study of pre-stack reservoir parameter inversion in dual phase media. Advances in Earth Science (in Chinese), 22(10): 1048-1054.
[8]  Geertsma J, Smit D C. 1961. Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophysics, 26(2): 169-181.
[9]  Grana D, Della R E. 2010. Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics, 75(3): O21-O37.
[10]  Hilterman F J. 1989. Is AVO the seismic signature of rock properties.//59th Annual Meeting, SEG, Expanded Abstracts. Dallas, Texas, 59.
[11]  Hilterman F J. 2001. Seismic amplitude interpretation: 2001 distinguished instructor short course (No.4). Houston: Geophysical Development Corporation.
[12]  Mavko G, Mukerji T. 1998. Bounds on low-frequency seismic velocities in partially saturated rocks. Geophysics, 63(3): 918-924.
[13]  Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge: Cambridge University Press.
[14]  Mou Y G. 1996. Reservoir Geophysics (in Chinese). Beijing: Petroleum Industry Press.
[15]  Nur A M, Wang Z J. 1989. Seismic and acoustic velocities in reservoir rocks: experimental studies. Geophysics reprint series. Society of Exploration Geophysicists.
[16]  Nur A M, Mavko G, Dvorkin J, et al. 1998. Critical porosity: A key to relating physical properties to porosity in rocks. The Leading Edge, 17(3): 357-362.
[17]  Nur A M, Wang Z J. 1999. Seismic and Acoustic Velocities in Reservoir Rocks: Recent Developments (Vol.3). Soc of Exploration Geophysicists.
[18]  Qiao W X, Wang Y, Yan Z P. 1992. Reflection and transmission of acoustic wave at a porous solid/porous solid interface. Chinese J. Geophys. (Acta Geophysica Sinica) (in Chinese), 35(2): 242-248.
[19]  Russell B H, Hedlin K, Hilterman F J, et al. 2003. Fluid-property discrimination with AVO: A Biot-Gassmann perspective. Geophysics, 68(1): 29-39.
[20]  Storn R, Price K. 1997. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4): 341-359.
[21]  Wang S X. 1990. Finite element numerical solution and AVO problem of elastic wave in two phase media (in Chinese). Beijing: University of Petroleum.
[22]  Wang H Q, Tian J Y. 2011. Review of the investigation of elastic-wave propagation in a fluid-saturated porous solid.//Bulletin of the Institute of Crustal Dynamics (in Chinese). Beijing: Seismological Press: 28-34.
[23]  White J E. 1975. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40(2): 224-232.
[24]  Wu K, Xue Q, Adler L.1990. Reflection and transmission of elastic waves from a fluid-saturated porous solid boundary. Journal of the Acoustical Society of America, 87:2349-2358.
[25]  Yang D H. 2002. Finite element method of the elastic wave equation and wave-field simulation in two-phase anisotropic media. Chinese J. Geophys. (in Chinese), 45(4): 575-583.
[26]  Yin X Y, Kong X X, Zhang F C, et al. 2013. Pre-stack AVO inversion based on the differential evolution algorithm. Oil Geophysical Prospecting (in Chinese), 48(4): 591-596.
[27]  Yong X S, Ma H Z, Gao J H. 2006. A study of AVO equation in dual-phase medium and parameter simplification. Advances in Earth Science (in Chinese), 21(3): 242-249.
[28]  Youzwishen C F. 2001. Non-linear sparse and blocky constraints for seismic inverse problems. Alberta: University of Alberta.
[29]  Zoeppritz K. 1919. On the reflection and penetration of seismic waves through unstable layers. Gttinger Nachr, 1(7B): 66-84.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133