全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SOM和PSO的非监督地震相分析技术

DOI: 10.6038/cjg20150933, PP. 3412-3423

Keywords: 自组织神经网络,粒子群算法,非监督地震相分析,聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

地震相分析技术是储层预测的一种重要方法,可以用来描述有利沉积相带的分布规律.传统的地震相聚类分析方法对大数据的处理运算速度较慢,且容易陷入局部极小值,造成聚类分析的结构不准确.本文提出基于自组织神经网络(SOM)和粒子群优化方法(PSO)相结合的地震相分析技术,利用自组织神经网络能够保持原始地震数据的拓扑结构特性的特点,将大量冗余样本压缩为小样本数据,再通过粒子群的全局寻优能力改善K均值聚类的效果.理论模型和实际应用表明该方法能既有效实现数据压缩,又能提供较为准确的全局解,在地震相预测中兼顾计算效率和计算精度.

References

[1]  Coléou T, Poupon M, Azbel K. 2003. Unsupervised seismic facies classification: A review and comparison of techniques and implementation. The Leading Edge, 22(10): 942-953, doi: 10.1190/1.1623635.
[2]  de Matos M C, Osorio P L M, Johann P R S. 2007. Unsupervised seismic facies analysis using wavelet transform and self-organizing maps. Geophysics, 72(1): P9-P21, doi: 10.1190/1.2392789.
[3]  Eberhart R C, Shi Y H. 2001. Particle swarm optimization: developments, applications and resources.//Proceedings of the IEEE Congress on Evolutionary Computation. Seoul: IEEE, 81-86.
[4]  Han J W, Kamber M. 2001. Data Mining: Concepts and Techniques (in Chinese). Beijing: China Machine Press.
[5]  Kennedy J, Eberhart R C. 1997. A discrete binary version of the particle swarm algorithm.//Proceedings of 1997 IEEE International Conference on Systems, Man, and Cybernetics. Orlando, FL: IEEE, 4104-4109.
[6]  Kohonen T. 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1): 59-69, doi: 10.1007/BF00337288.
[7]  Kohonen T. 1990. The self-organizing map. Proceedings of the IEEE, 78(9): 1464-80.
[8]  Li F, Wang S D, Chen X H, et al. 2014. Oil-gas prediction with multi-attributes fusion based on fuzzy logic. Oil Geophysical Prospecting (in Chinese), 49(1): 197-204.
[9]  Liu J M, H L CH, Hou L W. 2005. Cluster analysis based on particle optimization algorithm. Systems Engineering-Theory & Practice (in Chinese), (6): 54-58.
[10]  Liu L Y, Yang M Y, Xiong J L, et al. 1996. Seismic analysis with self-organizing neutral network. Oil Geophysical Prospecting (in Chinese), (S2): 90-94.
[11]  Liu X F, Zheng X D, Xu G C, et al. 2011. Locally linear embedding-based seismic attribute extraction and applications. Applied Geophysics, 7(4): 365-375, doi: 10.1007/s11770-010-0260-2.
[12]  Lu W K, Mou Y G. 1998. Seismic event automatic tracking using self-organizing neural network. Geophysical Prospecting for Petroleum (in Chinese), 37(1): 77-83.
[13]  Marroquín I D, Braulr J J, Hart B S. 2009. A visual data-mining methodology for seismic facies analysis: Part 1: Testing and comparison with other unsupervised clustering methods. Geophysics, 74(1): P1-P11, doi: 10.1190/1.3046455.
[14]  Mu X. 2005. Method of seismic facies auto-classification by the seismic geometrical attribute and the self-organizing neutral network. Geological Science and Technology Information (in Chinese), 24(3): 109-112.
[15]  Nivlet P. 2007. Uncertainties in seismic facies analysis for reservoir characterisation or monitoring: Causes and consequences. Oil & Gas Science and Technology-Revue de l''IFP, 62(2): 225-235, doi: 10.2516/ogst:2007019.
[16]  PSO-based multi-attribute dynamic clustering technology and its application. SEG Technical Program Expanded Abstracts, 1913-1917, doi: 10.1190/1.3627581.
[17]  Roy A, Matos M, Marfurt K J. 2010. Automatic seismic facies classification with kohonen self organizing maps-a tutorial. Geohorizons Journal of Society of Petroleum Geophysicists, 6-14.
[18]  Saggaf M M, Toks?z M N, Marhoon M I. 2003. Seismic facies classification and identification by competitive neural networks. Geophysics, 68(6): 1984-1999, doi: 10.1190/1.1635052.
[19]  Steeghs P, Drijkoningen G. 2001. Seismic sequence analysis and attribute extraction using quadratic time-frequency representations. Geophysics, 66(6): 1947-1959, doi: 10.1190/1.1487136.
[20]  Yue B B, Peng Z M, Hong Y G, et al. 2009. Wavelet inversion of pre-stack seismic angle-gather based on particle swarm optimization algorithm. Chinese J. Geophys. (in Chinese), 52(12): 3116-3123, doi: 10.3969/j.issn.0001-5733.2009.12.021.
[21]  Zhang X G. 2010. Pattern Recognition (Third Edition) (in Chinese). Beijing: Tsinghua University Press.
[22]  Zhao W Z, Shen A J, Pan W Q, et al. 2013. A research on carbonate karst reservoirs classification and its implication on hydrocarbon exploration: Cases studies from Tarim Basin. Acta Petrologica Sinica (in Chinese), 29(9): 3213-3222.
[23]  Zhu T, Li X F, Li Y Q, et al. 2011. Seismic scalar wave equation inversion based on an improved particle swarm optimization algorithm. Chinese J. Geophys. (in Chinese), 54(11): 2951-2959, doi: 10.3969/jissn.0001-5733.2011.11.025.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133