全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

华南东部地幔过渡带顶部低速层中的熔体含量估算

DOI: 10.6038/cjg20150921, PP. 3264-3271

Keywords: 华南,地幔过渡带,低速层,部分熔融,熔体含量

Full-Text   Cite this paper   Add to My Lib

Abstract:

地幔过渡带顶部低速层的成因及性质研究,对于认识地球内部物质运移及地幔对流过程等具有非常重要的动力学意义.最新的地震学研究显示,华南陆块东部地幔过渡带顶部的低速层存在着明显的区域性差异.一般认为,该低速层的形成与脱水引起的部分熔融有关.本文利用部分熔融体系的平衡几何模型,重点分析了熔体成分、位温、二面角和玄武质含量等因素对熔体含量的影响,并结合该低速层的分布特征,估算出研究区的南北两个子区域地幔过渡顶部熔体含量分别为~1.18vol.%和~2.02vol.%.这一熔体含量的显著差异可能与太平洋板片多期次俯冲作用的叠加有关.

References

[1]  Aubaud C, Hirschmann M M, Withers A C, et al. 2008. Hydrogen partitioning between melt, clinopyroxene, and garnet at 3 GPa in a hydrous MORB with 6 wt.%H2O. Contrib. Mineral. Petrol., 156(5): 607-625.
[2]  Bagley B, Courtier A M, Revenaugh J. 2009. Melting in the deep upper mantle oceanward of the Honshu slab. Phys. Earth Planet. Inter., 175(3-4): 137-144.
[3]  Bercovici D, Karato S. 2003. Whole-mantle convection and the transition-zone water filter. Nature, 425(6953): 39-44.
[4]  Berryman J G. 1980. Long-wavelength propagation in composite elastic media I. Spherical inclusions. J. Acoust. Soc. Am., 68(6): 1809-1819.
[5]  Chen L, Zhu R X, Wang T. 2007. Progress in continental lithosphere studies. Earth Science Frontiers (in Chinese), 14(2): 58-75.
[6]  Courtier A M, Jackson M G, Lawrence J F, et al. 2007. Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth Planet. Sci. Lett., 264(1-2): 308-316.
[7]  Courtier A M, Revenaugh J. 2007. Deep upper-mantle melting beneath the Tasman and Coral Seas detected with multiple ScS reverberations. Earth Planet. Sci. Lett., 259(1-2): 66-76.
[8]  Dasgupta R, Hirschmann M M. 2006. Melting in the Earth''s deep upper mantle caused by carbon dioxide. Nature, 440(7084): 659-662.
[9]  Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett., 227(1-2): 73-85.
[10]  Faccenna C, Becker T W, Lallemand S, et al. 2010. Subduction-triggered magmatic pulses: A new class of plumes?. Earth Planet. Sci. Lett., 299(1-2): 54-68.
[11]  Ghosh S, Ohtani E, Litasov K, et al. 2007. Stability of carbonated magmas at the base of the Earth''s upper mantle. Geophys. Res. Lett., 34(22): L22312.
[12]  Guillot B, Sator N. 2007. A computer simulation study of natural silicate melts. Part II: High pressure properties. Geochim. Cosmochim. Acta, 71(18): 4538-4556.
[13]  Herzberg C, Zhang J Z. 1996. Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone. J. Geophys. Res., 101(B4): 8271-8295.
[14]  Hier-Majumder S, Ricard Y, Bercovici D. 2006. Role of grain boundaries in magma migration and storage. Earth Planet. Sci. Lett., 248(3-4): 735-749.
[15]  Hier-Majumder S, Courtier A. 2011. Seismic signature of small melt fraction atop the transition zone. Earth Planet. Sci. Lett., 308(3-4): 334-342.
[16]  Hier-Majumder S, Keel E B, Courtier A M. 2014. The influence of temperature, bulk composition, and melting on the seismic signature of the low-velocity layer above the transition zone. J. Geophys. Res., 119(2): 971-983.
[17]  Hilde T W C, Uyeda S, Kroenke L. 1977. Evolution of the western Pacific and its margin. Tectonophysics, 38(1-2): 145-152, 155-165.
[18]  Hirschmann M M, Tenner T, Aubaud C, et al. 2009. Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Phys. Earth Planet. Inter., 176(1-2): 54-68.
[19]  Honza E, Fujioka K. 2004. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous. Tectonophysics, 384(1-4): 23-53.
[20]  Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res., 111(B9): B09305.
[21]  Huang R, Xu Y X, Luo Y H, et al. 2014. Mantle transition zone structure beneath Southeastern China and its implications for stagnant slab and water transportation in the mantle. Pure Appl. Geophys., 171(9): 2129-2136.
[22]  Inoue T. 1994. Effect of water on melting phase relations and melt composition in the system Mg2SiO4-MgSiO3-H2O up to 15 GPa. Phys. Earth Planet. Inter., 85(3-4): 237-263.
[23]  Inoue T, Kojima K, Irifune T. 2007. Water content of magma generated just above the 410 km seismic discontinuity. AGU Fall Meeting, Abstracts V24A-06.
[24]  Jasbinsek J J, Dueker K G, Hansen S M. 2010. Characterizing the 410 km discontinuity low-velocity layer beneath the LA RISTRA array in the North American Southwest. Geochem. Geophy. Geosy., 11(3): Q03008.
[25]  Jing Z C, Karato S I. 2008. Compositional effect on the pressure derivatives of bulk modulus of silicate melts. Earth Planet. Sci. Lett., 272(1-2): 429-436.
[26]  Jung H, Waff H S. 1998. Olivine crystallographic control and anisotropic melt distribution in ultramafic partial melts. Geophys. Res. Lett., 25(15): 2901-2904.
[27]  Karato S, Spetzler H A. 1990. Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev. Geophys., 28(4): 399-421.
[28]  Katsura T, Yamada H, Nishikawa O, et al. 2004. Olivine-wadsleyite transition in the system (Mg, Fe)2SiO4. J. Geophys. Res., 109(B2): B02209.
[29]  Kohlstedt D L. 1992. Structure, rheology and permeability of partially molten rocks at low melt fractions.//Mantle Flow and Melt Generation at Mid-Ocean Ridges. 71: 103-121.
[30]  Lee C T A, Chen W P. 2007. Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth''s mantle. Earth Planet. Sci. Lett., 255(3-4): 357-366.
[31]  Li C, van der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J. Geophys. Res., 115(B7): B07308.
[32]  Li G H, Sui Y, Zhou Y Z. 2014. Low-velocity layer atop the mantle transition zone in the lower Yangtze Craton from P waveform triplication. Chinese J. Geophys. (in Chinese), 57(7): 2362-2371, doi: 10.6038/cjg20140730.
[33]  Li Z X, Li X H, Chung S L, et al. 2012. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics, 532-535: 271-290.
[34]  Litasov K, Ohtani E. 2002. Phase relations and melt compositions in CMAS-pyrolite-H2O system up to 25 GPa. Phys. Earth Planet. Inter., 134(1-2): 105-127.
[35]  Mavko G M. 1980. Velocity and attenuation in partially molten rocks. J. Geophys. Res., 85(B10): 5173-5189.
[36]  McCarthy C, Takei Y. 2011. Anelasticity and viscosity of partially molten rock analogue: Toward seismic detection of small quantities of melt. Geophys. Res. Lett., 38(18): L18306.
[37]  McKenzie D, Bickle M J. 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. J. Petrology, 29(3): 625-679.
[38]  Obayashi M, Sugioka H, Yoshimitsu J, et al. 2006. High temperature anomalies oceanward of subducting slabs at the 410 km discontinuity. Earth Planet. Sci. Lett., 243(1-2): 149-158.
[39]  O''Connell R J, Budiansky B. 1974. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res., 79(35): 5412-5426.
[40]  Oreshin S I, Vinnik L P, Kiselev S G, et al. 2011. Deep seismic structure of the Indian shield, western Himalaya, Ladakh and Tibet. Earth Planet. Sci. Lett., 307(3-4): 415-429.
[41]  Revenaugh J, Sipkin S A. 1994. Seismic evidence for silicate melt atop the 410 km mantle discontinuity. Nature, 369(6480): 474-476.
[42]  Richard G C, Iwamori H. 2010. Stagnant slab, wet plumes and Cenozoic volcanism in East Asia. Phys. Earth Planet. Inter., 183(1-2): 280-287.
[43]  Sakamaki T, Suzuki A, Ohtani E. 2006. Stability of hydrous melt at the base of the Earth''s upper mantle. Nature, 439(7073): 192-194.
[44]  Schmandt B, Dueker K G, Hansen S M, et al. 2011. A sporadic low-velocity layer atop the western U. S. mantle transition zone and short-wavelength variations in transition zone discontinuities. Geochem. Geophy. Geosy., 12(8): Q08014.
[45]  Scott T, Kohlstedt D L. 2006. The effect of large melt fraction on the deformation behavior of peridotite. Earth Planet. Sci. Lett., 246(3-4): 177-187.
[46]  Sharp W D, Clague D A. 2006. 50 Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion. Science, 313(5791): 1281-1284.
[47]  Song T R A, Helmberger D V, Grand S P. 2004. Low-velocity zone atop the 410 km seismic discontinuity in the northwestern United States. Nature, 427(6974): 530-533.
[48]  Stixrude L, Lithgow-Bertelloni C. 2012. Geophysics of chemical heterogeneity in the mantle. Annu. Rev. Earth Planet. Sci., 40: 569-595.
[49]  Sun W D, Ding X, Hu Y H, et al. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet. Sci. Lett., 262(3-4): 533-542.
[50]  Takei Y. 1998. Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity. J. Geophys. Res., 103(B8): 18183-18203.
[51]  Takei Y. 2000. Acoustic properties of partially molten media studied on a simple binary system with a controllable dihedral angle. J. Geophys. Res., 105(B7): 16665-16682.
[52]  Takei Y. 2002. Effect of pore geometry on Vp/Vs: From equilibrium geometry to crack. J. Geophys. Res., 107(B2): ECV 6-1-ECV 6-12.
[53]  Tauzin B, Debayle E, Wittlinger G. 2010. Seismic evidence for a global low-velocity layer within the Earth''s upper mantle. Nature Geosci., 3(10): 718-721.
[54]  Vinnik L, Farra V. 2002. Subcratonic low-velocity layer and flood basalts. Geophys. Res. Lett., 29(4): 8-1-8-4.
[55]  Vinnik L, Farra V. 2007. Low S velocity atop the 410 km discontinuity and mantle plumes. Earth Planet. Sci. Lett., 262(3-4): 398-412.
[56]  Vinnik L, Kumar M R, Kind R, et al. 2003. Super-deep low-velocity layer beneath the Arabian plate. Geophys. Res. Lett., 30(7): 1415.
[57]  von Bargen N, Waff H S. 1986. Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures. J. Geophys. Res., 91(B9): 9261-9276.
[58]  Watson E B, Brenan J M, Baker D R. 1990. Distribution of fluids in the continental mantle.//Continental mantle. Oxford: Oxford University Press, 111-125.
[59]  Wimert J, Hier-Majumder S. 2012. A three-dimensional microgeodynamic model of melt geometry in the Earth''s deep interior. J. Geophys. Res., 117(B4): B04203.
[60]  Xu W B, Lithgow-Bertelloni C, Stixrude L, et al. 2008. The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett., 275(1-2): 70-79.
[61]  Yoshino T, Takei Y, Wark D A, et al. 2005. Grain boundary wetness of texturally equilibrated rocks, with implications for seismic properties of the upper mantle. J. Geophys. Res., 110(B8): B08205.
[62]  Yoshino T, Nishihara Y, Karato S I. 2007. Complete wetting of olivine grain boundaries by a hydrous melt near the mantle transition zone. Earth Planet. Sci. Lett., 256(3-4): 466-472.
[63]  Zhang P Z, Deng Q D, Zhang G M, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Sci. China Earth Sci., 46(2): 13-24.
[64]  Zhang Z J, Yang L Q, Teng J W, et al. 2011. An overview of the earth crust under China. Earth-Sci. Rev., 104(1-3): 143-166.
[65]  Zhou X M, Sun T, Shen W Z, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes, 29(1): 26-33.
[66]  Zhou X Y, Ma M N, Xu Z S. 2014. Progress of the low velocity zone atop the mantle transition zone. Progress in Geophysics (in Chinese), 29(4): 1615-1625, doi: 10.6038/pg20140417.
[67]  Zhu W L, Gaetani G A, Fusseis F, et al. 2011. Microtomography of partially molten rocks: three-dimensional melt distribution in mantle peridotite. Science, 332(6025): 88-91.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133