全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海洋可控源电磁三维非结构矢量有限元数值模拟

DOI: 10.6038/cjg20150817, PP. 2827-2838

Keywords: 海洋可控源电磁,三维正演,矢量有限元,非结构网格

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文实现了海洋可控源电磁三维矢量有限元数值模拟.由于采用非结构四面体单元进行三维网格剖分,该方法可以模拟复杂电性异常体和海底地形.一维模型的数值模拟结果表明,电场实、虚部均与解析解吻合得相当好,计算误差基本小于1%.二维模型的计算结果与已有的二维自适应非结构有限元模拟结果吻合很好.带地形模型的数值模拟结果显示,海底地形对电场影响很大,有可能掩盖海底油气藏产生的异常.

References

[1]  Ren Z Y, Kalscheuer T, Greenhalgh S, et al. 2014a. A hybrid boundary element-finite element approach to modeling plane wave 3D electromagnetic induction responses in the Earth. Journal of Computational Physics, 258:705-717.
[2]  Ren Z Y, Kalscheuer T, Greenhalgh S, et al. 2014b. A finite-element-based domain-decomposition approach for plane wave 3D electromagnetic modeling. Geophysics, 79(6):E255-E268.
[3]  Schenk O, Grtner K. 2004. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems, 20(3):475-487.
[4]  Schwarzbach C, Brner R U, Spitzer K. 2011. Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example. Geophysical Journal International, 187(1):63-74.
[5]  Sommer M, Hlz S, Moorkamp M, et al. 2013. GPU parallelization of a three dimensional marine CSEM code. Computers & Geosciences, 58:91-99.
[6]  Streich R. 2009. 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data:Direct solution and optimization for high accuracy. Geophysics, 74(5):F95-F105.
[7]  Sun X Y, Nie Z P, Zhao Y W, et al. 2008. The electromagnetic modeling of logging-while-drilling tool in tilted anisotropic formations using vector finite element method. Chinese Journal of Geophysics (in Chinese), 51(5):1600-1607, doi:10.3321/j.issn:0001-5733.2008.05.036.
[8]  Um E S, Commer M, Newman G A. 2013. Efficient pre-conditioned iterative solution strategies for the electromagnetic diffusion in the Earth:finite-element frequency-domain approach. Geophysical Journal International, 193(3):1460-1473.
[9]  Wang C Q. 2005. Advanced Computational Electromagnetics (in Chinese). Beijing:Peking University Press.
[10]  Wang Y. 2008. A study of 3D high frequency magnetotellurics modeling by edge-based finite element method [Ph. D. thesis] (in Chinese). Changsha:Central South University.
[11]  Wannamaker P E. 1991. Advances in three-dimensional magnetotelluric modeling using integral equations. Geophysics, 56(11):1716-1728.
[12]  [JPWeiss C J, Constable S. 2006. Mapping thin resistors and hydrocarbons with marine EM methods, Part II—Modeling and analysis in 3D. Geophysics, 71(6):G321-G332.
[13]  [JPWeiss C J. 2013. Project APhiD:A Lorenz-gauged A-Φ decomposition for parallelized computation of ultra-broadband electromagnetic induction in a fully heterogeneous Earth. Computers & Geosciences, 58:40-52.
[14]  Xiong Z H. 1992. Electromagnetic modeling of 3-D structures by themethod of system iteration using integral equations. Geophysics, 57(12):1556-1561.
[15]  Xu Z F, Wu X P. 2010. Controlled source electromagnetic 3-D modeling in frequency domain by finite element method. Chinese Journal Geophysics (in Chinese), 53(8):1931-1939, doi:10.3969/j.issn.0001-5733.2010.08.019.
[16]  Yang B, Xu Y X, He Z X, et al. 2012. 3D frequency-domain modeling of marine controlled source electromagnetic responses with topography using finite volume method. Chinese Journal of Geophysics (in Chinese), 55(4):1390-1399, doi:10.6038/j.issn.0001-5733.2012.04.035.
[17]  Yin C C, Piao H R. 1994. Three-dimensional electromagneticmodelling and its application in frequency-domain electromagnetic sounding methods. Acta Geophysica Sinica (in Chinese), 37(6):820-827.
[18]  Yue J H, Yang H Y, Hu B. 2008. 3D finite difference time domain numerical simulation for TEM in-mine. Progress in Geophysics [LL] (in Chinese), 22(6):1904-1909, doi:10.3969/j.issn.1004-2903.2007.06.036.
[19]  Zhang W, Zhang Z G, Chen X F. 2012. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids. Geophysical Journal International, 190(1):358-378.
[20]  Zhdanov M S, Lee S K, Yoshioka K. 2006. Integral equation method for 3D modeling of electromagnetic fields in complexstructures with inhomogeneous background conductivity. Geophysics, 71(6):G333-G345
[21]  Avdeev D B, Kuvshinov A V, Pankratov O V, et al. 2002. Three-dimensional induction logging problems, Part I:An integral equation solution and model comparisons. Geophysics, 67(2):413-426.
[22]  Avdeev D B. 2005. Three-dimensional electromagnetic modelling and inversion from theory to application. Surveys in Geophysics, 26(6):767-799.
[23]  Avdeev D, Knizhnik S. 2009. 3D integral equation modeling with a linear dependence on dimensions. Geophysics, 74(5):F89-F94.
[24]  Badea E A, Everett M E, Newman G A, et al. 2001. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials. Geophysics, 66(3):786-799.
[25]  Bangerth W, Hartmann R, Kanschat G. 2007. Deal. II—a general-purpose object-oriented finite element library. ACM Transactions on Mathematical Software (TOMS), 33(4):Article No. 24.
[26]  Bangerth W, Kayser-Herold O. 2009. Data structures and requirements for hp finite element software. ACM Transactions on Mathematical Software (TOMS), 36(1):Article No. 4.
[27]  Brner R U. 2010. Numerical modelling in geo-electromagnetics:advances and challenges. Surveys in Geophysics, 31(2):225-245.
[28]  Bossavit A, Vérité J. 1983. The "TRIFOU" Code:Solving the 3-D eddy-currents problem by using H as state variable. IEEE Transactions on Magnetics, 19(6):2465-2470.
[29]  Chen G B, Wang H N, Yao J J, et al. 2009. Modeling of electromagnetic responses of 3-D electrical anomalous body in a layered anisotropic earth using integral equations. Chinese Journal of Geophysics (in Chinese), 52(8):2174-2181, doi:10.3969/j.issn.0001-5733.2009.08.028.
[30]  Constable S, Srnka L J. 2007. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics, 72(2):WA3-WA12.
[31]  da Silva N V, Morgan J V, MacGregor L, et al. 2012. A finite element multifrontal method for 3D CSEM modeling in the frequency domain. Geophysics, 77(2):E101-E115.
[32]  Fu C M, Di Q Y, Wang M Y. 2009. 3D numeric simulation of marine controlled source electromagnetics (MCSEM). Oil Geophysical Prospecting (in Chinese), 44(3):358-363.
[33]  Geuzaine C, Remacle J F. 2009. Gmsh:A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309-1331.
[34]  Grayver A V, Streich R, Ritter O. 2013. Three-dimensional parallel distributed inversion of CSEM data using a direct forward solver. Geophysical Journal International, 193(3):1432-1446.
[35]  Grayver A V, Bürg M. 2014. Robust and scalable 3-D geo-electromagnetic modelling approach using the finite element method. Geophysical Journal International, 198(1):110-125.
[36]  Haber E, Ascher U M. 2001. Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients. SIAM Journal on Scientific Computing, 22(6):1943-1961.
[37]  He Z X, Yu G. 2008. Marine EM survey technology and its new advances. Progress in Exploration Geophysics (in Chinese), 31(1):2-9.
[38]  Hesthammer J, Stefatos A, Boulaenko M, et al. 2010. CSEM performance in light of well results. The Leading Edge, 29(1):34-41.
[39]  Hohmann G W. 1975. Three-dimensional induced polarization and electromagnetic modeling. Geophysics, 40(2):309-324.
[40]  Jin J M. 2002. The Finite Element Method in Electromagnetics. 2nd ed. New York:Wiley-IEEE Press.
[41]  Koldan J, Puzyrev V, de la Puente J, et al. 2014. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics. Geophysical Journal International, 197(3):1442-1458.
[42]  Li H, Zhang W, Zhang Z G, et al. 2015. Elastic wave finite-difference simulation using discontinuous curvilinear grid with non-uniform time step:two-dimensional case. Geophysical Journal International, 202(1):102-118.
[43]  Li J H, Zhu Z Q, Liu S C, et al. 2011. 3D numerical simulation for the transient electromagnetic field excited by the central loopbased on the vector finite-element method. Journal of Geophysics and Engineering, 8(4):560-567.
[44]  Li Y G, Key K. 2007. 2D marine controlled-source electromagnetic modeling:Part 1—An adaptive finite-element algorithm. Geophysics, 72(2):WA51-WA62.
[45]  Li Y, Wu X P, Lin P R. 2015. Three-dimensional controlled source electromagnetic finite element simulation using the secondary field for continuous variation of electrical conductivity within each block. Chinese Journal of Geophysics (in Chinese), 58(3):1072-1087, doi:10.6038/cjg20150331.
[46]  Liu C S, Tang J T, Ren Z Y, et al. 2010. Three-dimension magnetotellurics modeling by adaptive edge finite-element using unstructured meshes. Journal of Central South University (Science and Technology) (in Chinese), 41(5):1855-1859.
[47]  Maa F A. 2007. Fast finite-difference time-domain modeling for marine-subsurface electromagnetic problems. Geophysics, 72(2):A19-A23.
[48]  McMahon J. 1952. Lower bounds for the electrostatic capacity of a cube. Proceedings of the Royal Irish Academy. Section A:Mathematical and Physical Sciences, 55:133-167.
[49]  Mukherjee S, Everett M E. 2011. 3D controlled-source electromagnetic edge-based finite element modeling of conductive and permeable heterogeneities. Geophysics, 76(4):F215-F226.
[50]  Nédélec J C. 1980. Mixed finite elements in [WTHT]R[WTBZ]3. Numerische Mathematik, 35(3):315-341.
[51]  Newman G A, Alumbaugh D L. 1995. Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences. Geophysical Prospecting, 43(8):1021-1042.
[52]  Pridmore D F, Hohmann G W, Ward S H, et al. 1981. An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics, 46(7):1009-1024.
[53]  Puzyrev V, Koldan J, de la Puente J, et al. 2013. A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling. Geophysical Journal International, 193(2):678-693.
[54]  Ren Z Y, Kalscheuer T, Greenhalgh S, et al. 2013a. Boundary element solutions for broad-band 3-D geo-electromagnetic problems accelerated by an adaptive multilevel fast multipole method. Geophysical Journal International, 192(2):473-499.
[55]  Ren Z Y, Kalscheuer T, Greenhalgh S, et al. 2013b. A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling. Geophysical Journal International, 194(2):700-718.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133