全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

航空电磁数据主成分滤波重构的噪声去除方法

DOI: 10.6038/cjg20150815, PP. 2803-2811

Keywords: 时间域航空电磁,主成分,滤波重构,自适应窗宽,空间噪声

Full-Text   Cite this paper   Add to My Lib

Abstract:

主成分分析方法利用低阶主成分重构航空电磁数据,解决了航空电磁探测中噪声与数据在频谱重叠情况下的噪声压制问题,但是参与重构的低阶主成分仍包含高频空间噪声,影响数据成像精度.本文提出的主成分滤波重构去噪方法,根据自适应窗宽平滑算法,设计了主成分低通滤波器组,对参与重构的低阶主成分进行测线滤波,再将滤波后的低阶主成分重构为电磁信号,不仅可以去除低阶主成分中的高频空间噪声,而且去除了高阶主成分包含的不相关噪声.仿真数据的去噪结果表明,主成分滤波重构获得较高的信噪比,较常规测线滤波与主成分重构分别提高了10.96dB和2.52dB;电导率深度成像结果证明了主成分滤波重构方法能够提高地下深部异常体的识别能力.最后通过实测数据的成像结果进一步验证了本文研究的主成分滤波重构去噪方法的有效性.

References

[1]  Buselli G, Hwang H S, Pik J P. 1998. AEM noise reduction with remote referencing. Exploration Geophysics, 29(2):71-76.
[2]  Chang W W, Guo L, Liu K, et al. 2009. Denoising of hyperspectral data based on contourlet transform and principal component analysis. Journal of Electronics & Information Technology(in Chinese), 31(12):2892-2896.
[3]  Chawla M P S. 2011. PCA and ICA processing methods for removal of artifacts and noise in electrocardiograms:A survey and comparison. Applied Soft Computing, 11(2):2216-2226.
[4]  Green A. 1998. The use of multivariate statistical techniques for the analysis and display of AEM data. Exploration Geophysics, 29(2):77-82.
[5]  Jones I F, Levy S. 1987. Signal-to-noise ratio enhancement in multichannel seismic data via the karhunen-loéve transform. Geophysical Prospecting, 35(1):12-32.
[6]  Kass M A, Li Y G. 2007. Use of principal component analysis in the de-noising and signal-separation of transient electromagnetic data. The 3rdInternational Conference on Environmental and Engineering Geophysics(ICEEG). Wuhan, China.
[7]  Kass M A, Li Y G, Krahenbuhl R, et al. 2010. Enhancement of TEM data and noise characterization by principal component analysis. Douglas Oldenburg:Department of Geophysics Colorado School of Mines.
[8]  Lane R, Green A, Golding C, et al. 2000. An example of 3D conductivity mapping using the TEMPEST airborne electromagnetic system. Exploration Geophysics, 31(2):162-172.
[9]  Lane R, Plunkett C, Price A, et al. 1998. Streamed data—a source of insight and improvement for time domain airborne EM. Exploration Geophysics, 29(2):16-23.
[10]  Li N. 2009. Research on Airborne time-domain electromagnetic data preprocessing (in Chinese). Changchun:Jilin University.
[11]  Lü D W. 2011. Methods study of helicopter-borne towed bird time domain electromagnetic data processing (in Chinese). Chengdu:Chengdu University of Technology.
[12]  Macnae J C, Ltagne Y, West G F. 1984. Noise processing techniques for time-domain EM systems. Geophysics, 49(7):934-948.
[13]  Minty B, Hovgaard J. 2002. Reducing noise in gamma-ray spectrometry using spectral component analysis. Exploration Geophysics, 33(4):172-176.
[14]  O''Connell M D. 2010. Adaptive width filters for GEOTEM data. Canada, Ottawa:Consultant to Fugro Airborne Surveys.
[15]  Qian D, Fowler J E. 2007. Hyperspectral image compression using JPEG2000 and principal component analysis. IEEE Geoscience and Remote Sensing Letters, 4(2):201-205.
[16]  Ridsdill-Smith T A, Dentith M C. 1999. The wavelet transform in aeromagnetic processing. Geophysics, 64(4):1003-1013.
[17]  Yao L L, Feng X C, Li Y F. 2011. Principal component analysis method for muitiplicative noise removal. Acta Photonica Sinica(in Chinese), 40(7):1031-1035.
[18]  Yin C C, Huang W, Ben F. 2013. The full-time electromagnetic modeling for time-domain airborne electromagnetic system. Chinese Journal of Geophysics(in Chinese), 53(3):743-750, doi:10.6038/cjg20130928.
[19]  Zheng J L, Ying Q H, Yang W L. 2000. Signals and Systems(in Chinese). Beijing:Higher Education Press.
[20]  Zhu K G, Lin J, Han Y H, et al. 2010. Research on conductivity depth imaging of time domain helicopter-borne electromagnetic data based on neural network. Chinese Journal of Geophysics(in Chinese), 53(3):743-750, doi:10.3969/j.issn.0001-5733.2010.03.030.
[21]  Zhu K G, Ma M Y, Che H W, et al. 2012. PC-based artificial neural network inversion for airborne time-domain electromagnetic data. Applied Geophysics, 9(1):1-8.
[22]  Zhu K G, Wang L Q, Xie B, et al. 2013. Noise removal for airborne electromagnetic data based on principal component analysis. The Chinese Journal of Nonferrous Metals(in Chinese), 23(9):2430-2435.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133