全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大功率电波加热电离层中热自聚焦不稳定性的理论研究和数值模拟

DOI: 10.6038/cjg20150602, PP. 1853-1868

Keywords: 热自聚焦不稳定性,电子密度扰动,功率谱

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文首先从电子密度及电子温度的输运方程和考虑自作用时的电磁波波动方程出发,利用简正模展开的方法推导出泵波在反射区域激发出热自聚焦不稳定性(thermalself-focusinginstabilities,TSFI)所需电场阈值以及其增长率的完整数学表达式,并估算了TSFI激发阈值及所对应的有效辐射功率(ERP)的量级.随后利用三维垂直加热的理论模型,结合国际参考电离层(IRI-2012)和中性大气模型(MSIS-E-00)给出的背景参数,数值模拟了大功率高频泵波加热电离层时泵波反射区域电子密度及电子温度因TSFI而产生的变化及发展的过程,并对比分析了不同背景参数对较热效果的影响.结果表明:当高频泵波的加热阈值达到或超过百毫伏每米的量级时,即可激发TSFI,发展出大尺度电子密度及温度不均匀体,这些不均匀体内的密度耗空约为4%~10%,而电子温度剧烈增长,到达背景温度值的1.6~2.1倍;且在相当的加热条件下,背景电子温度越低、电子密度越小,加热效果越显著;电子密度及电子温度的扰动幅度随着加热时间的推移而逐渐减小,即扰动逐渐趋于饱和,且电子温度要快于电子密度达到饱和状态.本文还对泵波反射高度处的电子密度及电子温度变化率进行采样并求得其功率谱密度,分析结果表明:TSFI发展出的大尺度不均匀体满足幂律谱结构,谱指数随着加热的进行逐渐趋于稳定,白天与夜间的幂律谱指数区别不大,但电子密度与电子温度的幂律谱有所区别.

References

[1]  Gurevich A V. 1986. Nonlinear Phenomena in the Ionosphere (in Chinese). Liu X M, Zhang X X Trans. Beijing: Science Press.
[2]  Gurevich A V, Lukyanov A V, Zybin K P. 1995. Stationary state of isolated striations developed during ionospheric modification. Phys. Lett. A., 206(3-4): 247-259.
[3]  Gurevich A, Hagfors T, Carlson H, et al. 1998. Self-oscillations and bunching of striations in ionospheric modifications. Phys. Lett. A., 239(6): 385-392.
[4]  Guzdar P N, Chaturvedi P K, Papadopoulos K, et al. 1996. The self-focusing instability in the presence of density irregularities in the ionosphere. J. Geophys. Res., 101(A2): 2453-2460, doi: 10.1029/95JA02975.
[5]  Hao S J, Wu Z S, Yang J T, et al. 2013a. Influences of ionospheric background states on effects of ionospheric heating by powerful HF radio waves. Journal of Electronics & Information Technology (in Chinese), 35(6): 1502-1506.
[6]  Hao S J, Li Q L, Yang J T, et al. 2013b. Theory and numerical modeling of under-dense heating with powerful X-mode pump waves. Chinese Journal of Geophysics (in Chinese), 56(8): 2503-2510, doi: 10.6038/cjg20130801.
[7]  Hedin A E. 1991. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res., 96(A2): 1159-1172, doi: 10.1029/90JA02125.
[8]  Hinkel-Lipsker D E, Shoucri M M, Smith T M, et al. 1993. Modeling of high-frequency oblique propagation and heating in the ionosphere. Radio Sci., 28(5): 819-837.
[9]  Huang W G, Gu S F. 2003a. Interaction between the powerful high-frequency radio wave and the lower terrestrial ionosphere. Chinese Journal of Space Science (in Chinese), 23(3): 181-188.
[10]  Huang W G, Gu S F. 2003b. The heating of upper ionosphere by powerful high-frequency radio waves. Chinese Journal of Space Science (in Chinese), 23(5): 343-351.
[11]  Huang W G, Gu S F, Gong J C. 2004. Ionospheric heating by powerful high-frequency radio waves. Chinese Journal of Radio Science (in Chinese), 19(3): 296-301.
[12]  Kelley M C. 2009. The Earth''s Lonosphere, Volume 96, Second Edition: Plasma physics & Electrodynamics. San Diego: Elsevier.
[13]  LaHoz C. 1982. Studies of the self-focusing instability during ionospheric heating experiments [Ph. D. thesis]. Ithaca, New York: Cornell University.
[14]  Luo W H, Xu J S, Xu L. 2009. Analysis of controlling factors leading to the development of R-T instability in equatorial ionosphere. Chinese J. Geophys. (in Chinese), 52(4): 849-858.
[15]  Luo W H. 2009. Analysis of Controlling Factors Leading to the Development of R-T Instability in Low-latitude/equatorial Ionosphere (in Chinese). Wuhan: Wuhan University.
[16]  Meltz G, Holway Jr. L H, Tomljanovich N M. 1974. Ionospheric heating by powerful radio waves. Radio Sci., 9(11): 1049-1063.
[17]  Meng X, Fang H X. 2014. Preliminary simulation of heating effects of the lower ionosphere in Nanjing District. Chinese J. Geophys. (in Chinese), 57(11): 3642-3649, doi: 10.6038/cjg20141118.
[18]  Migulin V V. 1997. Investigations of ionospheric modifications in Russia. J. Atmos. Solar-Terr. Phys., 59(18): 2253-2256.
[19]  Picone J M, Hedin A E, Drob D P, et al. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res., 107(A12): SIA 15-1-SIA 15-16, doi: 10.1029/2002JA009430.
[20]  Richards P G, Bilitza D, Voglozin D. 2010. Ion density calculator (IDC): A new efficient model of ionospheric ion densities. Radio Sci., 45(5): RS5007.
[21]  Rietveld M T, Kohl H, Kopka H, et al. 1993. Introduction to ionospheric heating at Troms—I. Exprimental overview. J. Atmos. Terr. Phys., 55(4-5): 577-599.
[22]  Rietveld M T, Isham B, Kohl H, et al. 2000. Measurements of HF-enhanced plasma and ion lines at EISCAT with high-altitude resolution. J. Geophys. Res., 105(A4): 7429-7439, doi: 10.1029/1999JA900476.
[23]  Shoucri M M, Morales G J, Maggs J E. 1984. Ohmic heating of the polar F region by HF pulses. J. Geophys. Res., 89(A5): 2907-2917, doi: 10.1029/JA089iA05p02907.
[24]  Wang Z G, Xu B, Xu Z W, et al. 2012. A comparison of numerical simulation and measurements during ionospheric heating. Chinese J. Geophys. (in Chinese), 55(3): 751-759, doi: 10.6038/j.issn.0001-5733.2012.03.004.
[25]  Wu J, Che H Q, Wu J, et al. 2007. A simulation of the heating effect of high power radio wave on the lower polar ionosphere. Chinese Journal of Polar Research (in Chinese), 19(3): 171-180.
[26]  Xu B, Wu J, Wu J, et al. 2009. Observations of the heating experiments in the polar winter ionosphere. Chinese J. Geophys. (in Chinese), 52(4): 859-877, doi: 10.3969/j.issn.0001-5733.2009.04.002.
[27]  古列维奇 A V. 1986. 电离层中的非线性现象. 刘选谋, 张训械译. 北京: 科学出版社.
[28]  郝书吉, 吴振森, 杨巨涛等. 2013a. 电离层背景状态对大功率短波加热电离层效应的影响. 电子与信息学报, 35(6): 1502-1506.
[29]  郝书吉, 李清亮, 杨巨涛等. 2013b. 大功率高频X波欠密加热电离层的理论与数值模拟. 地球物理学报, 56(8): 2503-2510, doi: 10.6038/cjg20130801.
[30]  黄文耿, 古士芬. 2003a. 大功率无线电波与低电离层的相互作用. 空间科学学报, 23(3): 181-188.
[31]  黄文耿, 古士芬. 2003b. 大功率无线电波对高电离层的加热. 空间科学学报, 23(5): 343-351.
[32]  黄文耿, 古士芬, 龚建村. 2004. 大功率高频无线电波加热电离层. 电波科学学报, 19(3): 296-301.
[33]  罗伟华. 2009. 低纬/赤道电离层广义R-T不稳定性发展的控制因素分析[博士论文]. 武汉: 武汉大学电子信息学院.
[34]  罗伟华, 徐继生, 徐良. 2009. 赤道电离层广义R-T不稳定性发展的控制因素分析. 地球物理学报, 52(4): 849-858.
[35]  孟兴, 方涵先. 2014. 南京地区低电离层加热效应的初步模拟. 地球物理学报, 57(11): 3642-3649, doi: 10.6038/cjg20141118.
[36]  Bernhardt P A, Duncan L M. 1982. The feedback-diffraction theory of ionospheric heating. J. Atmos. Terr. Phys., 44(12): 1061-1074.
[37]  Bilitza D, McKinnell L A, Reinisch B, et al. 2011. The international reference ionosphere today and in the future. J. Geodesy., 85(12): 909-920, doi: 10.1007/s00190-010-0427-x.
[38]  Duncan L M, Behnke R A. 1978. Observations of self-focusing electromagnetic waves in the ionosphere. Phys. Rev. Lett., 41(14): 998-1001.
[39]  Farley D T, LaHoz C, Fejer B G. 1983. Studies of the self-focusing instability at Arecibo. J. Geophys. Res., 88(A3): 2093-2102, doi: 10.1029/JA088iA03p02093.
[40]  Gondarenko N A, Guzdar P N, Milikh G M, et al. 1999. Spatio-temporal development of the filaments due to the thermal self-focusing instability near the critical surface in ionospheric plasmas. Radiophys. Quantum Electron., 42(7): 589-600.
[41]  Gondarenko N A, Guzdar P N, Ossakow S L, et al. 2003. Linear mode conversion in inhomogeneous magnetized plasmas during ionospheric modification by HF radio waves. J. Geophys. Res., 108(A12): CiteID 1470, doi: 10.1029/2003JA009985.
[42]  Gondarenko N A, Ossakow S L, Milikh G M. 2005. Generation and evolution of density irregularities due to self-focusing in ionospheric modifications. J. Geophys. Res., 110(A09): 304-317, doi: 10.1029/2005JA011142.
[43]  Gordon W E, Carlson Jr. H C. 1974. Arecibo heating experiments. Radio Sci., 9(11): 1041-1047.
[44]  王占阁, 徐彬, 许正文等. 2012. 极区电离层加热的数值模拟与实验对比. 地球物理学报, 55(3): 751-759, doi: 10.6038/j.issn.0001-5733.2012.03.004.
[45]  吴军, 车海琴, 吴建等. 2007. 北极区低电离层加热效应的数值模拟研究. 极地研究, 19(3): 171-180.
[46]  徐彬, 吴军, 吴建等. 2009. 我国极区冬季电离层加热实验研究. 地球物理学报, 52(4): 859-877, doi: 10.3969/j.issn.0001-5733.2009.04.002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133