全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青藏高原东部和周边地区地壳速度结构的背景噪声层析成像

DOI: 10.6038/cjg20150510, PP. 1568-1583

Keywords: 背景噪声,瑞利面波,层析成像,剪切波速度结构,青藏高原,柴达木盆地和祁连山脉地区

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用连续地震背景噪声记录和互相关技术获得瑞利面波格林函数,进而反演获得了青藏高原东部和周边地区的地壳三维速度结构.地震数据源于北京大学宽频带流动观测地震台阵,国家数字测震台网数据备分中心提供的部分固定台站的连续记录及INDEPTHIV宽频带流动观测地震台阵.首先对观测数据进行处理和分析取得所有可能台站对的面波经验格林函数和瑞利波相速度频散曲线,反演得到了观测台阵下方周期从6~60s的瑞利波相速度异常分布图像.并且进一步反演获得研究区域三维剪切波速度结构和莫霍面深度分布.短周期(6~14s)相速度异常分布与地表地质构造特征吻合较好,在青藏高原和四川盆地之间存在一个明显的南北向转换带.而本文最重要的结果是周期大于25s的相速度异常分布图像显示,以昆仑断裂带为界,柴达木盆地和祁连山脉地区呈现与青藏高原截然不同的中地壳速度结构,反而与青藏高原东缘地区和川滇菱形块体速度结构相似.反演获得的剪切波速度在27.5~45km深度的切片也明显地揭示:青藏高原的松潘—甘孜地块和羌塘地块呈现均一的低速层;然而,柴达木盆地和祁连山脉地区则呈现较强的横向不均匀性,尤其是柴达木盆地的高速异常和四川盆地的高速异常相对应.这些结果为前人提出的青藏高原东北向台阶式增长模式提供了重要的地震学观测证据.与全球一维平均速度模型(AK135)相比较发现,本文测量和反演获得的研究区域内平均相速度和剪切波速度都比AK135模型慢很多,尤其是青藏高原的中地壳(25~40km)剪切波速度显著低于全球平均速度模型.进一步的层析成像反演证实松潘—甘孜和羌塘地块中地壳(27.5~45km)呈现大范围均一的低速层,为青藏高原可能存在大规模中下地壳"层流"提供地震学观测证据.在祁连山脉的27.5~45km深度观测到的明显低速异常体可能对应于该造山带下地幔岩浆活动导致的底侵作用,表明引起该地区地壳增厚的主要机制可能是来自地幔岩浆的底侵作用.

References

[1]  Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5): 358-362.
[2]  Barmin M P, Ritzwoller M H, Levshin A L. 2001. A fast and reliable method for surface wave tomography. Pure and Applied Geophysics, 158(8): 1351-1375.
[3]  Barron J, Priestley K. 2009. Observations of frequency-dependent Sn propagation in Northern Tibet. Geophysical Journal International, 179(1): 475-488.
[4]  Curtis A, Trampert J, Snieder R, et al. 1998. Eurasian fundamental mode surface wave phase velocities and their relationship with tectonic structures. Journal of Geophysical Research-Solid Earth, 103(B11): 26919-26947.
[5]  DeCelles P G, Robinson D M, Zandt G. 2002. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics, 21(6): 12-1-12-25.
[6]  England P, Searle M. 1986. The cretaceous-tertiary deformation of the Lhasa Block and its implications for crustal thickening in Tibet. Tectonics, 5(1): 1-14.
[7]  Feng C C, Teng T L. 1983. Three-dimensional crust and upper mantle structure of the eurasian continent. Journal of Geophysical Research, 88(B3): 2261-2272.
[8]  Griot D A, Montagner J P, Tapponnier P. 1998. Phase velocity structure from Rayleigh and Love waves in Tibet and its neighboring regions. Journal of Geophysical Research-Solid Earth, 103(B9): 21215-21232.
[9]  Gu S S, Di H S. 1989. Mechanism of formation of the Qaidam basin and its control on petroleum.//Zhu X ed. Chinese Sedimentary Basins. Amsterdam: Elsevier, 45-51.
[10]  Harrison T M, Yin A, Grove M, et al. 2000. The Zedong Window: A record of superposed Tertiary convergence in southeastern Tibet. Journal of Geophysical Research-Solid Earth, 105(B8): 19211-19230.
[11]  Hearn T M, Wang S Y, Ni J F, et al. 2004. Uppermost mantle velocities beneath China and surrounding regions. Journal of Geophysical Research-Solid Earth, 109(B11), doi: 10.1029/2003JB002874.
[12]  Huang Z X, Su W, Peng Y J, et al. 2003. Rayleigh wave tomography of China and adjacent regions. Journal of Geophysical Research-Solid Earth, 108(B2), doi: 10.1029/2001JB001696.
[13]  Huang J L, Zhao D P, Zheng S H. 2002. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J. Geophys. Res., 107(B10): ESE 13-1-ESE 13-14.
[14]  Li C, van der Hilst R D, Meltzer A S, et al. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1-2): 157-168.
[15]  Li H Y, Su W, Wang C Y, et al. 2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet. Earth and Planetary Science Letters, 282(1-4): 201-211.
[16]  Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7), doi: 10.1029/2004GL019491.
[17]  Snieder R. 2004. Extracting the Green''s function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E, 69(4): 046610.
[18]  Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3): 1239-1260.
[19]  Bilham R, Larson K, Freymueller J, et al. 1997. GPS measurements of present-day convergence across the Nepal Himalaya. Nature, 386(6620): 61-64.
[20]  Bourjot L, Romanowicz B. 1992. Crust and upper mantle tomography in tibet using surface waves. Geophysical Research Letters, 19(9): 881-884.
[21]  Brandon C, Romanowicz B. 1986. A "no-lid" zone in the central Chang-Thang platform of Tibet: Evidence from pure path phase velocity measurements of long period Rayleigh waves. Journal of Geophysical Research-Solid Earth and Planets, 91(B6): 6547-6564.
[22]  Burchfiel B C, Zhang P Z, Wang Y P, et al. 1991. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics, 10(6): 1091-1110.
[23]  Campillo M, Paul A. 2003. Long-range correlations in the diffuse seismic coda. Science, 299(5606): 547-549.
[24]  Campillo M. 2006. Phase and correlation in ‘Random’ seismic fields and the reconstruction of the green function. Pure and Applied Geophysics, 163(2-3): 475-502.
[25]  Chen S F, Wilson C J L, Deng Q D, et al. 1994. Active faulting and block movement associated with large earthquakes in the Min Shan and Longmen Mountains, northeastern Tibetan Plateau. Journal of Geophysical Research, 99(B12): 24025-24038.
[26]  Chen S F, Wilson C J L, Worley B A. 1995. Tectonic transition from the Songpan-Garzê fold belt to the Sichuan Basin, south-western China. Basin Research, 7(3): 235-253.
[27]  Chen S F, Wilson C J L. 1996. Emplacement of the Longmen Shan Thrust-Nappe belt along the eastern margin of the Tibetan plateau. Journal of Structural Geology, 18(4): 413-430.
[28]  Clark M K, Bush J W M, Royden L H. 2005. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophysical Journal International, 162(2): 575-590.
[29]  Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research-Solid Earth, 111(B9), doi: 10.1029/2005JB004066.
[30]  Jiang M M, Zhou S Y, Sandvol E, et al. 2011. 3-D lithospheric structure beneath southern Tibet from Rayleigh-wave tomography with a 2-D seismic array. Geophysical Journal International, 185(2): 593-608.
[31]  Kang T S, Shin J S. 2006. Surface-wave tomography from ambient seismic noise of accelerograph networks in southern Korea. Geophysical Research Letters, 33(17), doi: 10.1029/2006GL027044.
[32]  Liang C T, Song X D, Huang J L. 2004. Tomographic inversion of Pn travel times in China. Journal of Geophysical Research-Solid Earth, 109(B11), doi: 10.1029/2003JB002789.
[33]  Liang C T, Song X D. 2006. A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography. Geophysical Research Letters, 33(22), doi: 10.1029/2006GL027926.
[34]  Lobkis O I, Weaver R L. 2001. On the emergence of the Green''s function in the correlations of a diffuse field. Journal of the Acoustical Society of America, 110(6): 3011-3017.
[35]  Long D X. 1983. A preliminary study on the songpan-pingwu earthquakes and their stress field. Journal of Seismological Research, (S1).
[36]  Métivier F, Gaudemer Y, Tapponnier P, et al. 1998. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics, 17(6): 823-842.
[37]  Meyer B, Tapponnier P, Bourjot L, et al. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 135(1): 1-47.
[38]  Pares J M, Van der Voo R, Downs W R, et al. 2003. Northeastward growth and uplift of the Tibetan Plateau: Magnetostratigraphic insights from the Guide Basin. Journal of Geophysical Research: Solid Earth (1978-2012), 108(B1): EPM 1-1-EPM 1-11.
[39]  Paul A, Campillo M, Margerin L, et al. 2005. Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves. Journal of Geophysical Research-Solid Earth, 110(B8), doi: 10.1029/2004JB003521.
[40]  Ritzwoller M H, Levshin A L. 1998. Eurasian surface wave tomography: Group velocities. Journal of Geophysical Research-Solid Earth, 103(B3): 4839-4878.
[41]  Ritzwoller M H, Levshin A L, Ratnikova L I, et al. 1998. Intermediate-period group-velocity maps across Central Asia, western China and parts of the Middle East. Geophysical Journal International, 134(2): 315-328.
[42]  Romanowicz B A. 1982. Constraints on the structure of the Tibet Plateau from pure path phase velocities of love and Rayleigh waves. Journal of Geophysical Research, 87(B8): 6865-6883.
[43]  Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788-780.
[44]  Saito M. 1988. DISPER80: A subroutine package for the calculation of seismic normal mode solutions.//Doornbos D J ed. Seismological Algorithms: Computational Methods and Computer Programs. San Diego: Academic Press, 293-319.
[45]  Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715): 1615-1618.
[46]  Song S G, Zhang L F, Niu Y, et al. 2004. Northern Tibetan Paleozoic bloc evolution and continent subduction. Geology Brief (in Chinese), 23(009):918-925.
[47]  Takeuchi H, Dorman J, Saito M. 1964. Partial derivatives of surface wave phase velocity with respect to physical parameter changes within the Earth. Journal of Geophysical Research, 69(16): 3429-3441.
[48]  Tapponnier P, Meyer B, Avouac J P, et al. 1990. Active Thrusting and folding in the qilian shan, and decoupling between upper crust and mantle in Northeastern Tibet. Earth and Planetary Science Letters, 97(3-4): 382-383, 387-403.
[49]  Tapponnier P, Peltzer G, Ledain A Y, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12): 611-616.
[50]  Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671-1677.
[51]  Wan J L, Zheng W J, Zheng D W, et al. 2010. Low temperature thermal evidence of Northern Qilian mountain tectonics at the late Cenozoic era. Geochemistry (in Chinese), 39(5):439-446.
[52]  Wang J, Bao C, Lou Z, et al. 1989. Formation and development of the Sichuan Basin.//Zhu J ed. Chinese Sedimentary Basins. Amsterdam: Elsevier, 1: 147-163.
[53]  Wapenaar K. 2004. Retrieving the elastodynamic Green''s function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letters, 93(25): 254301.
[54]  Wu F T, Levshin A. 1994. Surface-wave group velocity tomography of East Asia. Physics of the Earth and Planetary Interiors, 84(1-4): 59-77.
[55]  Xu G M, Yao H J, Zhu L B, et al. 2007. Shear wave velocity structure of the crust and upper mantle in western China and its adjacent area. Chinese Journal of Geophysics, 50(1): 192-209, doi: 10.1002/cjg2.1025.
[56]  Xu L L, Rondenay S, van der Hilst R D. 2007. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Physics of the Earth and Planetary Interiors, 165(3-4): 176-193.
[57]  Xu Y, Liu F T, Liu J H, et al. 2002. Crust and upper mantle structure beneath western China from P wave travel time tomography. Journal of Geophysical Research-Solid Earth, 107(B10): ESE 4-1-ESE 4-15.
[58]  Yang Y J, Ritzwoller M H, Levshin A L, et al. 2007. Ambient noise rayleigh wave tomography across Europe. Geophysical Journal International, 168(1): 259-274.
[59]  Yao H J, Beghein C, van der Hilst R D. 2008. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—II. Crustal and upper-mantle structure. Geophysical Journal International, 173(1): 205-219.
[60]  Yue H, Chen Y J, Sandvol E, et al. 2012. Lithospheric and upper mantle structure of the northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth (1978—2012), 117(B5), doi: 10.1029/2011JB008545.
[61]  Zhang P Z, Deng Q D, Zhang G M, et al. 2003. Seismicity and seismic active blocks of China. China Science(D)(in Chinese),33(B04):12-20.
[62]  Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809-812.
[63]  Zheng S H, Sun X L, Song X D, et al. 2008. Surface wave tomography of China from ambient seismic noise correlation. Geochemistry Geophysics Geosystems, 9(5), doi: 10.1029/2008GC001981.
[64]  Zheng X F, Yao Z X, Liang J H, et al. 2010. The role played and opportunities provided by IGP DMC of China national seismic network in wenchuan earthquake disaster relief and researches. Bulletin of the Seismological Society of America, 100(5B): 2866-2872.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133