全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

近30年北半球冬季臭氧总量分布特征及其与平流层温度的关系

DOI: 10.6038/cjg20150502, PP. 1475-1491

Keywords: 臭氧总量,平流层温度,分布特征,旋转经验正交函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

臭氧的时空分布特征对气候和环境变化具有显著影响,随着臭氧资料数量的增加和质量的提高,有必要对臭氧时空分布特征及其与气候变化的关系进行详细研究.本文利用欧洲中期天气预报中心提供的1979—2013年的全球月平均臭氧总量资料、平流层温度场资料,采用旋转经验正交函数分解(REOF)、Morlet小波分析、合成分析等方法研究了20°N以北的北半球冬季(12—2月)臭氧总量异常的主要空间分布结构与时间演变特征,并进一步分析了主要模态与平流层上层(2hPa)、中层(30hPa)以及下层(100hPa)温度异常的关系.结果表明:近30年北半球冬季臭氧总量异常变化最显著的区域主要有5个,分别位于极地地区(75°N—90°N,0°—360°)、北半球副热带地区(20°N—40°N,0°—360°)、阿拉斯加地区(60°N—75°N,180°—260°E)、北大西洋地区(45°N—60°N,310°E—360°E)及西伯利亚地区(50°N—65°N,80°E—130°E).5个区域的冬季臭氧总量异常具有明显的年际和年代际变化特征.1980年代后期是各个区域的臭氧总量异常由年代际偏多转为偏少的转换时段.此外,各区域存在显著的年际变化周期,而且各个区域的年际周期存在明显的差异.臭氧总量异常变化与平流层温度异常变化的关系表明,臭氧总量异常的增加(减少)能够导致平流层上层温度异常偏冷(暖)和平流层中、下层温度异常偏暖(冷),其中平流层中层温度异常的偏暖(冷)程度要比下层更加明显.

References

[1]  Austin J, Knight J R, Butchart N. 2000. Three-dimensional chemical model simulations of the ozone layer: 1979—2015. Quart. J. Roy. Meteor. Soc., 126(565): 1533-1556.
[2]  Camp C D, Roulston M S, Yung Y L. 2003. Temporal and spatial patterns of the interannual variability of total ozone in the tropics. J. Geophys. Res., 108(D20): 4643, doi: 10.1029/2001JD001504.
[3]  Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656): 553-597.
[4]  Deng S M, Chen Y J, Luo T, et al. 2009. The vertical distribution characteristics of ozone during stratospheric sudden warming. Chinese Journal of Atmospheric Sciences (in Chinese), 33(3): 459-467.
[5]  Eder B K, LeDuc S K, Sickles II J E. 1999. A climatology of total ozone mapping spectrometer data using rotated principal component analysis. J. Geophys. Res., 104(D3): 3691-3709.
[6]  Farman J C, Gardiner B G, Shanklin J D. 1985. Large losses of total ozone in Antarctica reveal seasonal CIOx/NOx interaction. Nature, 315(6016): 207-210.
[7]  Ge L, Liang J X, Chen Y L. 1997. Antarctic climatic variation in the troposphere and lower stratosphere with causes. Journal of Nanjing Institute of Meteorology (in Chinese), 20(1): 47-53.
[8]  Qu S H. 1994. Main characteristics and trends in global ozone layer. Advance in Earth Sciences (in Chinese), 9(5): 39-47.
[9]  Shindell D, Kuylenstierna J C I, Vignati E, et al. 2012. Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335(6065): 183-189, doi: 10.1126/science. 1210026.
[10]  Shindell D T, Miller R L, Schmidt G A, et al. 1999. Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 399: 452-455.
[11]  Solomon S, Qin D, Manning M, et al. 2007. Climate change 2007: the physical science basis.// Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
[12]  Stolarski R S, Bloomfiel P, Mcpeters R D, et al. 1991. Total Ozone trends deduced from Nimbus7 Toms data. Geophys. Res. Lett., 18(6): 1015-1018.
[13]  Weatherhead E C, Andersen S B. 2006. The search for signs of recovery of the ozone layer. Nature, 441: 39-45.
[14]  Wei D W, Guo S C, Zhao Y L. 1989. Chart collection of the Northern Hemisphere Atmospheric Ozone Space-Time Change and Distribution During 1963—1985. Beijing: Science Press.
[15]  Wei F Y. 1999. Diagnosis and Prediction of Modern Climate Statistics Technology (in Chinese). Beijing: China Meteorological Press.
[16]  World Meteorological Organization, United Nations Development Program. 1995. The global climate system review June 1991-November1993. Geneva: WMO.
[17]  Zheng M H, Fu Z T, Chen Z. 2010. The possible impact of Arctic ozone depletion on surface air temperature in Asia-Pacific regions during springtime. Plateau Meteorology (in Chinese), 29(2): 412-419.
[18]  Zhou R J, Chen Y J. 2007. Effects of variation of low ozone center over the Tibetan Plateau on climate in China. Chinese Journal of Atmospheric Sciences (in Chinese), 31(3): 479-485.
[19]  Wang T J, Sun Z B. 1999. Development of study on ozone variation and its climatic effect. Advance in Earth Sciences (in Chinese), 14(1): 37-43.
[20]  Wang W G, Guo S C, Yang L Q. 1990. The research of vertical ozone distribution and its variation. Acta Geophysica Sinica (in Chinese), 33(6): 639-646.
[21]  Wang W G, Fan W X, Wu J, et al. 2006. A study of spatial-temporal evolvement of the global cross-tropopause ozone mass flux. Chinese J. Geophys. (in Chinese), 49(6): 1595-1607.
[22]  Wang W G, Yuan M, Wang H Y, et al. 2008. A study of ozone amount in the transition layer between troposphere and stratosphere and its heating rate. Chinese J. Geophys. (in Chinese), 51(5): 1309-1320.
[23]  Weatherhead E C, Reinsel G C, Tiao G C, et al. 2000. Detecting the recovery of total column ozone. J. Geophys. Res., 105(D17): 22201-22210.
[24]  Zhu Q G, Guo P W. 2000. Features of northern spring atmospheric ozone variation and its effect on atmospheric temperature and circulation. Quarterly Journal of Applied Meteorology (in Chinese), 11(4): 448-454.
[25]  Guo P W, Zhu Q G, Liu X F. 2001. Features of atmospheric ozone interannual variation in spring of Northern Hemisphere and its effect on temperature and circulation. Plateau Meteorology (in Chinese), 20(3): 245-251.
[26]  Guo S C, Chang Y L, Zhang L N. 2007. Research on the interannual and interdecadal variations of the atmospheric ozone in the middle latitude region of the Northern Hemisphere. Chinese Journal of Atmospheric Sciences (in Chinese), 31(3): 418-424.
[27]  Guo S C, Li C C, Guo Y R, et al. 2014. Trends of atmospheric ozone over the Northern Hemisphere in the past 33 years. Journal of Tropical Meteorology (in Chinese), 30(2): 319-326.
[28]  Hering W S, Touart C N, Borden T R. 1967. Ozone heating and radiative equilibrium in the lower stratosphere. J. Atmos. Sci., 24(4): 402-413.
[29]  Houghton J T. 2002. The Physics of Atmospheres. Cambridge: Cambridge University Press, 320pp.
[30]  Hu Y Y, Xia Y, Gao M, et al. 2008. Stratospheric temperature changes and ozone recovery in the 21st century. Acta Meteorologica Sinica, 66(6): 880-891.
[31]  Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007: the physical science basis.// Solomon S, Qin D, Manning M, eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press, 1-996.
[32]  Jiang X, Pawson S, Camp C D, et al. 2008. Interannual variability and trends of extratropical ozone. Part I: Northern Hemisphere. J. Atmos. Sci., 65: 3013-3029.
[33]  Kong Q X, Liu G R, Wang G C. 1996. Observations and analyses of atmospheric ozone over Antarctic Zhongshan Station in the spring of 1993. Chinese Journal of Atmospheric Sciences (in Chinese), 20(4): 395-400.
[34]  Krzyscin J W, Rajewska-Wiech B. 2009. Trends in the ozone vertical distribution from the Umkehr observations at Belsk 1963—2007. International Journal of Remote Sensing, 30(15-16): 3917-3926.
[35]  Li C Y. 1995. Introduction to Climate Dynamics (in Chinese). Beijing: China Meteorological Press.
[36]  Li C Y, Li L, Tan Y K, et al. 2008. Stratospheric Climate (in Chinese). Beijing: China Meteorological Press.
[37]  Li C Y, Gao D Y, Chen Y J, et al. 2009. Some Forward Researches in Atmospheric Science (in Chinese). Hefei: CST University Press.
[38]  Li Y, Cai X H, Xie F Q. 2002. Recent trends of total ozone variation over East-Asia. Environmental Science, 23(Supp.): 103-105.
[39]  Newchurch M J, Yamg E S, Cunnold D M, et al. 2003. Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery. J. Geophy. Res., 108(D16): 4507.
[40]  North G R, Bell T L, Cahalan R F, et al. 1982. Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110(7): 699-706.
[41]  Wang G Q. 1985. Atmospheric Ozone Research (in Chinese). Beijing: China Science Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133