全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三角网格有限元法波动模拟的数值频散及稳定性研究

DOI: 10.6038/cjg20150522, PP. 1717-1730

Keywords: 有限元法,线性三角网格,数值频散,稳定性,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

三角网格有限元法能够准确模拟复杂构造和复杂介质条件下的地震波场,数值频散和稳定性条件是地震波数值模拟中参数选择的主要依据.基于均匀的线性三角网格单元,根据结构刚度矩阵的组装原理以及平面波理论,推导了集中质量矩阵下两种网格结构的声波频散函数以及稳定性条件,并对数值频散特性以及稳定性进行了详细研究:三角网格单元中波动的数值频散除了受到空间采样间隔、单元网格纵横比和波传播方向等常规因素的影响外,还受到网格布局的影响,过锐或过钝的三角单元会对波动数值频散产生不良的影响,不同类型的单元网格、单元纵横比对应着不同的稳定性条件,正三角单元中的波动具有较好的数值频散特性,其数值各向异性(频散随波传播方向的变化)效应最弱,稳定性条件也较为宽松.最后通过数值模拟直观地验证了以上分析结果,为有限元正演三角网格的剖分和参数的设置提供一定的理论依据.

References

[1]  Christon M A. 1999. The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation. Comput. Methods Appl. Mech. Eng., 173(1): 147-166.
[2]  Du S T. 1982. Finite element numerical solution of wave propagation in non-homogeneous medium with variable velocities. Journal of East China Petroleum Institute (in Chinese), 6(2): 1-20.
[3]  Abboud N N, Pinsky P M. 1992. Finite element dispersion analysis for the three-dimensional second-order scalar wave equation. Int. J. Numer. Methods Eng., 35(6): 1183-1218.
[4]  Ainsworth M, Monk P, Muniz W. 2006. Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput., 27(1-3): 5-40.
[5]  De Basabe J D, Sen M K. 2007. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics, 72(6): T81-T95.
[6]  De Basabe J D, Sen M K, Wheeler M F. 2008. The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion. Geophys. J. Int., 175(1): 83-93.
[7]  Guo J. 1991. A kind of fast finite element algorithm. Geophysical Prospecting for Petroleum (in Chinese), 30(2): 36-43.
[8]  Hu F Q, Hussaini M Y, Rasetarinera P. 1999. An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys., 151(2): 921-946.
[9]  He X J, Yang D H, Wu H. 2014. Numerical dispersion and wave-field simulation of the Runge-Kutta discontinuous Galerkin method. Chinese J. Geophys. (in Chinese), 57(3): 906-917,doi:10.6038/cjg20140320.
[10]  Ke B, Zhao B, Cai J, et al. 2001. 2-D finite element acoustic wave modeling including rugged topography. 71th Annual International Meeting, SEG, Expanded Abstracts, 1199-1202.
[11]  Lee R, Cangellaris A C. 1992. A study of discretization error in the finite element approximation of wave solutions. IEEE Trans. Antennas Propag., 40(5): 542-549.
[12]  Liu J B, Sharan S K, Yao L. 1994. Wave motion and its dispersive properties in a finite element model with distortional elements. Comput. Struct., 52(2): 205-214.
[13]  Liu Y, Sen M K. 2009. A new time-space domain high-order finite-difference method for the acoustic wave equation. J. Comput. Phys., 228(23): 8779-8806.
[14]  Liu T, Wei X, De Basabe J D, et al. 2012. Grid dispersion and stability of the spectral element method with triangular elements. 82th Annual International Meeting, SEG, Expanded Abstracts, 1-5.
[15]  Liu Y S, Teng J W, Liu S L, et al. 2013. Explicit finite element method with triangle meshes stored by sparse format and its perfectly matched layers absorbing boundary condition. Chinese J. Geophys. (in Chinese), 56(9): 3085-3099,doi:10.6038/cjg20130921.
[16]  Liu Y S, Teng J W, Xu T, et al. 2014. Numerical modeling of seismic wavefield with the SEM based on Triangles. Progress in Geophysics (in Chinese), 29(4): 1715-1726,doi:10.6038/pg20140430.
[17]  Lu X, Zhang S Y, Cui X W. 2014. Finite element method for 2.5D resistivity forward modeling based on anomaly electric field. Progress in Geophysics (in Chinese), 29(6): 2718-2722,doi:10.6038/pg20140637.
[18]  Li L, Liu T, Hu T Y. 2014. Spectral element method with triangular mesh and its application in seismic modeling. Chinese J. Geophys. (in Chinese), 57(4): 1224-1234,doi:10.6038/cjg20140419.
[19]  Mullen R, Belytschko T. 1982. Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation. Int. J. Numer. Methods Eng., 18(1): 11-29.
[20]  Mulder W A. 1999. Spurious modes in finite-element discretizations of the wave equation may not be all that bad. Appl. Numer. Math., 1999, 30(4): 425-445.
[21]  Saad Y. 2000. Iterative Methods for Sparse Linear Systems. Philadelphia: SIAM.
[22]  Sun C Y. 2007. Theory and Methods of Seismic Waves. Dongying: China University of Petroleum Press (in Chinese): 31-37.
[23]  Sun C Y, Gong T J, Zhang Y L, et al. 2009. Analysis on dispersion and alias in finite-difference solution of wave equation. Oil Geophysical Prospecting (in Chinese), 44(1): 43-48.
[24]  Sun C Y, Xiao Y F, Yin X Y, et al. 2010. Study on the stability of finite difference solution of visco-elastic wave equations. Acta Seismologica Sinica (in Chinese), 32(2): 147-156.
[25]  Seriani G,Oliveira S P. 2008. Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion, 45(6): 729-744.
[26]  Wang M C. 2003. Finite Element Method. Beijing: Tsinghua University press (in Chinese): 472-475.
[27]  Wu G C, Wang H Z. 2005. Analysis of numerical dispersion in wave-field simulation. Progress in Geophysics (in Chinese), 20(1): 58-65.
[28]  Wang W S, Zhang H, Li X F. 2013. Review on application of the discontinuous Galerkin method for modeling of the seismic wavefield. Progress in Geophysics (in Chinese), 28(1): 171-179,doi:10.6038/pg20130118.
[29]  Wu Z Q, Song W J. 2013. Resistivity transverse section method and its application in quantified explanation of oblique faults. Progress in Geophysics (in Chinese), 28(5): 2748-2752,doi:10.6038/pg20130559.
[30]  Wang R, Wang M Y, Di Q Y, et al. 2014. 3D1C CSAMT modeling using finite element method. Progress in Geophysics (in Chinese), 29(2): 839-845,doi:10.6038/pg20140249.
[31]  Xu S Z. 1994. Finite Element Method for Geophysics. Beijing: Science Press (in Chinese): 39-42.
[32]  Xue D C, Wang S X, Jiao S J. 2007. Wave equation finite element modeling including rugged topography and complicated medium. Progress in Geophysics (in Chinese), 22(2): 522-529.
[33]  Xue D C, Wang S X. 2008a. Wave-equation finite element prestack reverse-time migration. Oil Geophysical Prospecting (in Chinese), 43(1): 17-21.
[34]  Xue D C, Wang S X. 2008b. Using combined mass matrix to suppress numerical dispersion. Oil Geophysical Prospecting (in Chinese), 43(3): 318-320.
[35]  Xue Z, Dong L G, Li X B, et al. 2014. Discontinuous Galerkin finite-element method for elastic wave modeling including surface topography. Chinese J. Geophys. (in Chinese), 57(4): 1209-1223,doi:10.6038/cjg20140418.
[36]  Yu K Y. 1982. Numerical analysis in the construction of synthetic seismograms by the finite element method. Journal of East China Petroleum Institute (in Chinese), 6(4): 11-27.
[37]  Yue B, Guddati M N. 2005. Dispersion-reducing finite elements for transient acoustics. J. Acoust. Soc. Am., 118(4): 2132-2141.
[38]  Yin X Y, Zhou J K, Wu G C, et al. 2014. Dispersion analysis for the finite element algorithm in acoustic wave equation numerical simulation. Acta Seismologica Sinica (in Chinese), 36(5): 944-955.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133