全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

位涡塔结构及演变对飓风Wilma(2005)强度变化的影响

DOI: 10.6038/cjg20150505, PP. 1513-1525

Keywords: 热带气旋,位涡塔,强度变化,稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用高分辨率模式输出资料,对飓风Wilma(2005)不同发展阶段内位涡塔(PotentialVorticityTower:PVT)的结构和演变进行诊断分析,并讨论位涡塔分布特征对飓风快速增强(RapidIntensification:RI)过程的影响.研究结果表明,内核区域位涡的强度和结构变化主要取决于高层的暖心下传、中层的凝结潜热释放和低层的动力稳定性,而低层切向平均位涡的结构及其稳定性变化,对飓风快速增强的不同发展阶段具有很好的指示意义.飓风Wilma增强过程中,在高层增温、潜热释放和对流垂直混合作用下,PVT的结构出现单极位涡塔(MonopolePVT:MPVT)和中空位涡塔(HollowPVT:HPVT)的相互转化,也造成了涡旋系统动力稳定性的变化.在实际个例中,重新定义位涡环的结构参数,即相对厚度和中空度,这两个参数能够表征系统的稳定性,将其在RI过程中的变化与飓风Wilma强度变化作相关性分析,表明结构参数能够表征PVT结构的不稳定性,且与飓风系统强度变化参数具有很好的相关性,结构参数与海平面气压变化率的相关性能够通过显著性检验.

References

[1]  Holland G J, Wang Y Q. 1999. What limits tropical cyclone intensity.// Preprint of the 23rd Conference on Hurricanes and Tropical Meteorology. Amer. Meteor. Soc., Dallas, Texas, 955-958.
[2]  Houze Jr R A, Chen S S, Smull B F, et al. 2007. Hurricane Intensity and Eyewall Replacement. Science, 315(5816): 1235-1239.
[3]  Knaff J A, Kossin J P, De Maria M. 2003. Annular hurricanes. Wea. Forecasting, 18: 204-223.
[4]  Macdonald N J. 1968. The evidence for the existence of Rossby-like waves in the hurricane vortex. Tellus, 20(1): 138-150.
[5]  Michalke A, Timme A. 1967. On the inviscid instability of certain two-dimensional vortex-type flows. J. Fluid Mech., 29(4): 647-666.
[6]  M?ller J D, Smith R K. 1994. The development of potential vorticity in a hurricane-like vortex. Quart. J. Roy. Meteor. Soc., 120(519): 1255-1265.
[7]  Montgomery M T, Kallenbach R J. 1997. A theory for vortex rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123(538): 435-465.
[8]  Montgomery M T, Vladimirov V A, Denissenko P V. 2002. An experimental study on hurricane mesovortices. J. Fluid Mech., 471: 1-32.
[9]  Montgomery M T, Bell M M, Aberson S D, et al. 2006. Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87(10): 1335-1347.
[10]  Nolan D S, Montgomery M T, Grasso L D. 2001. The wavenumber-one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58(21): 3243-3270.
[11]  Schubert W H, Alworth B T. 1987. Evolution of potential vorticity in tropical cyclones. Quart. J. Roy. Meteor. Soc., 113(475): 147-162.
[12]  Schubert W H, Montgomery M T, Taft R K, et al. 1999. Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56(9): 1197-1223.
[13]  Terwey W D, Montgomery M T. 2008. Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113: D12112.
[14]  Wang Y, Wu C-C. 2004. Current understanding of tropical cyclone structure and intensity changes—a review. Meteor. Atmos. Phys., 87(4): 257-278.
[15]  Zhong W, Zhang D L, Lu H C. 2009. A theory for mixed vortex Rossby-gravity waves in tropical cyclones. J. Atmos. Sci., 66(11): 3366-3381.
[16]  Zhong W, Lu H C, Zhang D L. 2010. Mesoscale barotropic instability of vortex Rossby wave in tropical cyclones. Adv. Atmos. Sci., 27(2): 243-252.
[17]  Aberson S D, Black M, Montgomery M T, et al. 2006. Hurricane Isabel (2003): New insights into the physics of intense storms. Part II: Extreme localized wind. Bull. Amer. Meteor. Soc., 87(10): 1349-1354.
[18]  Bender M A, Ginis I, Kurihara Y. 1993. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98(D12): 23245-23263.
[19]  Bender M A. 1997. The effect of relative flow in the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54: 703-724.
[20]  Chen H, Zhang D L, Carton J, et al. 2011. On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26(6): 885-901
[21]  Chen H, Zhang D L. 2013. On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70: 146-162.
[22]  Chen L S, Ding Y H. 1979. Generality of Western North Pacific Typhoons (in Chinese). Beijing: Chinese Science Press, 403.
[23]  Duan Y H, Qin Z H, Gu D F, et al. 1998. Numerical study on the effects of sea surface temperature on tropical cyclone intensity-Part I: Numerical experiment of the tropical cyclone intensity related to SST. Acta Meteorologica Sinica, 12(2): 142-148.
[24]  Hendricks E A. 2008. Tropical cyclone evolution via internal asymmetric dynamics. Colorado: Colorado State University.
[25]  Hendricks E A, Schubert W H, Taft R K, et al. 2009. Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66(3): 705-722.
[26]  Hendricks E A, Schubert W H. 2010. Adiabatic rearrangement of hollow PV towers. J. Adv. Model. Earth. Syst., 2: 1-19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133