全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

上月壳中的散射引起月震尾波的数值模拟研究

DOI: 10.6038/cjg20150519, PP. 1675-1691

Keywords: 散射,月震尾波,数值模拟,计算地震学,地震波传播

Full-Text   Cite this paper   Add to My Lib

Abstract:

在阿波罗月震记录中普遍存在着强烈持久的尾波信号,这样的波形特征无法用均匀分层月球模型解释.一个普遍被接受的解释是月震尾波由月球浅层结构对月震波的散射引起.我们采用基于交错网格的伪谱和有限差分混合方法模拟研究非均匀上月壳对月震波的散射效应,在此基础上解释月震尾波的形成机制,并估计出上月壳速度扰动的强度.我们发现,在均匀分层模型基础上,进一步考虑上月壳中的非均匀结构对月震波的散射效应,能有效地解释月震信号中强烈持久的尾波.我们认为月震尾波可能是由上月壳中的低波速、低衰减和散射这三个因素的共同作用所引起.采用不同的扰动标准差模拟上月壳的非均匀性,并比较模拟波形与真实月震图的相似程度,我们发现上月壳中速度扰动的标准差应该在3%到5%之间,很可能接近于3%.

References

[1]  Dainty A M, Toks?z M N, Anderson K R, et al. 1974. Seismic scattering and shallow structure of the moon in oceanus procellarum. The Moon, 91(1-2): 11-29.
[2]  Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4): 297-356.
[3]  Frankel A, Clayton R W. 1986. Finite difference simulations of seismic scattering: Implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity. J. Geophys. Res.: Solid Earth (1978—2012), 91(B6): 6465-6489.
[4]  Furumura T, Kennett B L N, Furumura M. 1998. Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method. Geophys. J. Int., 135(3): 845-860.
[5]  Furumura T, Kennett B L N. 2005. Subduction zone guided waves and the heterogeneity structure of the subducted plate: Intensity anomalies in northern Japan. J. Geophys. Res., 110, B10302, doi: 10.1029/2004JB003486.
[6]  Furumura T, Kennett B L N. 2008. A scattering waveguide in the heterogeneous subducting plate.// Sato H, Fehler M eds. Scattering of Short-Period Seismic Waves in Earth Heterogeneity, Advances in Geophysics. Vol.50, Chap. 7. Elsevier, 195-217.
[7]  Garcia R F, Gagnepain-Beyneix J, Chevrot S, et al. 2011. Very preliminary reference Moon model. Physics of the Earth and Planetary Interiors, 188(1-2): 96-113, doi: 10.1016/j.pepi.2011.06.015.
[8]  Goins N R, Dainty A M, Toks?z M N. 1981. Seismic energy release of the Moon. J. Geophys. Res., 86(B1): 378-388.
[9]  Graves R W. 1996. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America, 86(4): 1091-1106.
[10]  Sato H, Fehler M C. 1998. Seismic Wave Propagation and Scattering in the Heterogeneous Earth. New York: Springer-Verlag.
[11]  Aki K, Richards P G. 1980. Quantitative Seismology Volume Ⅱ. San Francisco: W.H. Freeman.
[12]  Blanchette-Guertin J F, Johnson C L, Lawrence J F. 2012a. Investigation of scattering in lunar seismic coda. J. Geophys. Res.: Planets (1991—2012), 117(E6), doi: 10.1029/2011JE004042.
[13]  Blanchette-Guertin J F, Johnson C L, Lawrence J F. 2012b. Modeling seismic waveforms in a highly scattering Moon.// 43rd Lunar and Planetary Science Conference, Abstract 1473, Lunar and Planetary Institute, Houston.
[14]  Blanchette-Guertin J F, Johnson C L, Lawrence J F. 2013. Effect of variable scatterer length-scales and frequency dependent attenuation on the decay of lunar seismic coda.// 44th Lunar and Planetary Science Conference, Abstract 1234. Houston: Lunar and Planetary Institute.
[15]  Bulow R C, Johnson D L, Shearer P M. 2005. New events discovered in the Apollo lunar seismic data. J. Geophys. Res., 110, E10003, doi: 10.1029/2005JE002414.
[16]  Cerjan C, Kosloff D, Kosloff R, et al. 1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50(4): 705-708.
[17]  Helmberger D V, Vidale J E. 1988. Modeling strong motions produced by earthquakes with two-dimensional numerical codes. Bulletin of the Seismological Society of America, 78(1): 109-121.
[18]  Herrmann R B. 1979. SH-wave generation by dislocation sources—a numerical study. Bulletin of the Seismological Society of America, 69(1): 1-15.
[19]  Jiang M M, Ai Y S. 2010. Moonquakes and lunar interior. Geochimica (in Chinese), 39(1): 15-24.
[20]  Kennett B L N, Furumura T. 2013. High-frequency Po/So guided waves in the oceanic lithosphere: I—long-distance propagation. Geophys. J. Int., 195(3): 1862-1877.
[21]  Khan A, Maclennan J, Taylor S R, et al. 2006. Are the Earth and the Moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modeling. J. Geophys. Res., 111, E05005, doi: 10.1029/2005JE002608.
[22]  Koyama J, Nakamura Y. 1980. Focal mechanism of deep moonquakes.// Bedini S A ed. Lunar and Planetary Science Conference Proceedings, Vol. 11. 1855-1865.
[23]  Latham G, Ewing M, Dorman J, et al. 1972. Moonquakes and lunar tectonism. The Moon, 4(3-4): 373-382.
[24]  Latham G V, Ewing M, Press F, et al. 1970. Passive seismic experiment. Science, 167(3918): 455-457.
[25]  Li D Z, Helmberger D, Clayton R W, et al. 2014. Global synthetic seismograms using a 2-D finite-difference method. Geophys. J. Int., 197(2): 1166-1183.
[26]  McGetchin T R, Settle M, Head J W. 1973. Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth Planet. Sci. Lett., 20(2): 226-236.
[27]  Nakamura Y. 1977. Seismic energy transmission in an intensively scattering environment. J. Geophys. Res., 43(1-2): 389-399.
[28]  Nakamura Y. 1978. A1 moonquakes-source distribution and mechanism.// Lunar and Planetary Science Conference Proceedings, Vol.9. 3589-3607.
[29]  Nakamura Y. 2005. Farside deep moonquakes and the deep interior of the Moon. J. Geophys. Res., 110(E1): E0100, doi: 10.1029/204JE002332.
[30]  Nakamura Y, Latham G V, Dorman H J, et al. 1979. Shallow moonquakes-depth, distribution and implications as to the present state of the lunar interior.// Lunar and Planetary Science Conference Proceedings, Vol. 10. 2299-2309.
[31]  Ouyang Z Y. 2005. Introduction to Lunar Science (in Chinese). Beijing: China Astronautic Publishing House.
[32]  Shearer P M, Earle P S. 2004. The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophys. J. Int., 158(3): 1103-1117.
[33]  Shearer P M. 2007. Deep Earth structure—Seismic scattering in the deep Earth.// Seismology and the Structure of the Earth, Treatise Geophys., Vol. 1. Amsterdam: Elsevier, 695-729.
[34]  Thompson T W, Campbell B A, Ghent R R, et al. 2009. Rugged crater ejecta as a guide to megaregolith thickness in the southern nearside of the Moon. Geology, 37(7): 655-658, doi: 10.1130/G25565A.1.
[35]  Tromp J. 2007. Forward modeling and synthetic seismograms: 3D
[36]  numerical methods.// Romanowicz B, Dziewonski A eds.Treatise on Geophysics. Amsterdam: Elsevier, 191-217.
[37]  Wang Y B, Takenaka H, Furumura T. 2001. Modelling seismic wave propagation in a two dimensional cylindrical whole earth model using the pseudospectral method. Geophys. J. Int., 145(3): 689-708.
[38]  Wang Y B, Takenaka H, Jiang X H, et al. 2013. Modelling two-dimensional global seismic wave propagation in a laterally heterogeneous whole-Moon model. Geophys. J. Int., 192(3): 1271-1287, doi:10.1093/gji/ggs094.
[39]  Weber R C, Lin P Y, Garnero E J, et al. 2011. Seismic detection of the lunar core. Science, 331(6015): 309-312.
[40]  Witte D C, Richards P G. 1990. The pseudospectral method for simulating wave propagation. Computational Acoustics, 3: 1-18.
[41]  Zhan W, Li F. 2007. The inner structure of the moon. Progress in Geophysics (in Chinese), 22(3): 737-742.
[42]  Lawrence J F, Johnson C L. 2010. Synthetic seismograms with high-frequency scattering for the Moon.// 41st Lunar and Planetary Science Conference, Abstract 2701. Houston: Lunar and Planetary Institute.
[43]  Levander A R. 1988. Fourth-order finite-difference P-SV seismograms. Geophysics, 53(11): 1425-1436.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133