全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2014年11月22日康定M6.3级地震序列发震构造分析

DOI: 10.6038/cjg20150410, PP. 1205-1219

Keywords: 康定M6.3级地震序列,重新定位,震源机制,发震构造,强震危险性

Full-Text   Cite this paper   Add to My Lib

Abstract:

2014年11月22日在NW向鲜水河断裂带中南段四川康定县发生M6.3级地震,11月25日在该地震震中东南约10km处再次发生M5.8级地震.基于中国国家数字地震台网和四川区域数字地震台网资料,采用多阶段定位方法对本次康定M6.3级地震序列进行了重新定位;利用gCAP(generalizedCutAndPaste)矩张量反演方法获得了M6.3和M5.8级地震的震源机制解与矩心深度,分析了本次地震序列的发震构造,并结合历史强震破裂时空分布和2001年以来小震重新定位结果,对鲜水河断裂带中段强震危险性进行了初步探讨.获得的主要结果如下:(1)M6.3级主震震中位于101.69°E、30.27°N,震源初始破裂深度约10km,矩心深度9km;M5.8级地震震中位于101.73°E、30.18°N,初始破裂深度约11km,矩心深度9km.gCAP矩张量反演结果揭示这两次地震双力偶分量占主导,M6.3级地震的最佳双力偶解节面Ⅰ走向143°/倾角82°/滑动角-9°,节面Ⅱ走向234°/倾角81°/滑动角-172°.M5.8级地震最佳双力偶解节面Ⅰ走向151°/倾角83°/滑动角-6°,节面Ⅱ走向242°/倾角84°/滑动角-173°.依据余震分布长轴展布与断裂走向,判定节面Ⅰ为发震断层面,M6.3和M5.8级地震均为带有微小正断分量的左旋走滑型地震.(2)序列中重新定位的459个地震平均震源深度约9km,地震主要集中分布在6~11km深度区间,余震基本发生在M6.3和M5.8级地震震源上部.依据余震密集区展布范围,推测本次康定地震的震源体尺度长约30km、宽约4km、深度范围约6km.M6.3级主震震源附近的余震稀疏区可能是一个较大的凹凸体(asperity),在主震中能量得以充分释放.(3)最初3天的余震主要分布在M6.3级地震NW侧;而M5.8级地震之后的余震主要集中在其震中附近.M6.3级地震以及最初3天的绝大部分余震发生在倾角约82°近直立的NW走向色拉哈断裂上;M5.8级地震与其后的多数余震发生在倾角约83°近直立的NW走向折多塘断裂北端走向向北偏转部位,M5.8级地震可能是M6.3级地震触发相邻的折多塘断裂活动所致.(4)康定M6.3与M5.8级地震发生在鲜水河断裂带乾宁与康定之间的色拉哈强震破裂空段,本次地震破裂尺度较小,尚不足以填补该强震空段.色拉哈段以及相邻的乾宁段7级地震平静时间均已超过其平均复发周期估值,未来几年存在发生7级地震的危险.康定M6.3级地震序列基本填补了震前存在于塔公与康定之间的深部小震空区,未来强震发生在塔公至松林口段深部小震稀疏区内的可能性很大.

References

[1]  Aki K. 1984. Asperities, barriers, characteristic earthquakes and strong motion prediction. J. Geophys. Res., 89(B7):5867-5872.
[2]  Allen C R, Lou Z L, Qian H, et al. 1991. Field study of a highly active fault zone:The Xianshuihe fault of Southwestern China. Geological Society of America Bulletin, 103(9):1178-1199.
[3]  Tang R C, Han W B. 1993. Active Faults and Earthquakes in Sichuan Province (in Chinese). Beijing:Seismological Press, 1-368.
[4]  Wen X Z, Ma S L, Xu X W, et al. 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Phys. Earth Planet. Inter., 168(1-2):16-36, doi:10.1016/j.pepi.2008.04.013.
[5]  Cheng E L. 1981. Recent tectonic stress field and tectonic movement of the Sichuan Province and its vicinity. Acta Seismologica Sinica (in Chinese), 3(3):231-241.
[6]  Fan J, Zhu J S, Jiang X T, et al. 2015. Crustal structure of Sichuan from receiver functions. Earthquake (in Chinese), 34(1):65-76.
[7]  Kato A, Miyatake T, Hirata N. 2010. Asperity and barriers of the 2004 Mid-Niigata Prefecture earthquake revealed by highly dense seismic observations. Bull. Seismol. Soc. Am., 100(1):298-306.
[8]  Klein F W. 1989. HYPOINVERSE, a program for VAX computers to solve for earthquake locations and magnitudes. U.S.Geological Survey Open-File Report, 89-314, 59 pp.
[9]  Kissling E. 1988. Geotomography with local earthquake data. Rev. Geophys., 26(4):659-698.
[10]  Kissling E, Ellsworth W L, Eberhart-Phillips D, et al. 1994. Initial reference models in local earthquake tomography. J. Geophys. Res., 99(B10):19635-19646.
[11]  Kissling E, Kradolfer U, Maurer H. 1995. VELEST user''s guide-short introduction, Tech. Rep. Institute of Geophysics, ETH Zurich.
[12]  Liu G Z, Ma J, Zhang H X, et al. 2013. Study on activity features of Xianshuihe fault zone with fault creep and short baseline observation for the last 20 years. Chinese J. Geophys. (in Chinese), 56(3):878-891, doi:10.6038/cjg20130317.
[13]  Long F, Wen X Z, Ruan X, et al. 2015. A more accurate relocation of the 2013 Ms7.0 Lushan, Sichuan, China, earthquake sequence, and the seismogenic structure analysis. J. Seismol., doi:10.1007/s10950-015-9485-0.
[14]  Molnar P, Deng Q. 1984. Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia. J. Geophys. Res., 89(B7):6203-6227, doi:10.1029/JB089iB07p06203.
[15]  Parsons T, Ji C, Kirby E. 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 454(7203):509-510, doi:10.1038/nature07177.
[16]  Qian H. 1989. Faulted landforms along the Xianshuihe fault zone and their seismological significance. Seismology and Geology (in Chinese), 11(4):43-49.
[17]  Ran H L. 2014. A synthetic seismicity model for the northwestern portion of the Xianshuihe fault, southwestern China:simulation using the Monte Carlo method, based on historical earthquake data. Bull. Seismol. Soc. Am., 104(2):898-912, doi:10.1785/0120120313.
[18]  Shan B, Xiong X, Zheng Y, et al. 2009. Stress changes on major faults caused by Mw7.9 Wenchuan earthquake, May 12, 2008. Sci. China Ser. D-Earth Sci., 52(5):593-601.
[19]  Shao Z G, Zhou L Q, Jiang C S, et al. 2010. The impact of Wenchuan Ms8.0 earthquake on the seismic activity of surrounding faults. Chinese J. Geophys. (in Chinese), 53(8):1784-1795, doi:10.3969/j.issn.0001-5733.2010.08.004.
[20]  Toda S, Lin J, Meghraoui M, et al. 2008. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys. Res. Lett., 35(17):L17305, doi:10.1029/2008GL034903.
[21]  Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault, California. Bull. Seismol. Soc. Am., 90(6):1353-1368.
[22]  Wang E, Burchfiel B C, Royden L H, et al. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali Fault Systems of Southwestern Sichuan and Central Yunnan, China. Boulder, Colorado, Geological Society of America Special, Paper 327.
[23]  Wang S F, Fan C, Wang G, et al. 2008. Late Cenozoic deformation along the northwestern continuation of the Xianshuihe fault system, Eastern Tibetan Plateau. GSA Bulletin, 120(3-4):312-327, doi:10.1130/B25833.1
[24]  Wan Y G, Shen Z K, Sheng S Z, et al. 2009. The influence of 2008 Wenchuan earthquake on surrounding faults. Acta Seismologica Sinica (in Chinese), 31(2):128-139.
[25]  Wang Z X, Xu Z Q, Yang T N, et al. 1996. Study of deformation mechanism of the Xianshui river fault zone-A shallow-level, high-temperature ductile shear zone. Regional Geology of China (in Chinese), (3):244-251.
[26]  Wen X Z. 1995. Quantitative Estimates of Seismic Potential on Active Faults (in Chinese). Beijing:Seismological Press, 1-150.
[27]  Wen X Z. 2000. Character of rupture segmentation of the Xianshuihe-Anninghe-Zemuhe fault zone, Western Sichuan. Seismology and Geology (in Chinese), 22(3):239-249.
[28]  Wen X Z, Allen C R, Luo Z L, et al. 1989. Segmentation, geometric features, and their seismotectonic implications for the Holocene Xianshuihe fault zone. Acta Seismologica Sinica (in Chinese), 11(4):362-372.
[29]  Working Group of M7. 2012. Study on the Mid- to Long-term Potential of Large Earthquakes on the Chinese Continent (in Chinese). Beijing:Seismological Press, 1-336.
[30]  Working Group on California Earthquake Probabilities. 1990. Probabilities of large earthquakes in the San Francisco Bay Region, California, U. S. Geological Survey Circular, 51.
[31]  Xie F R, Zhu J Z, Liang H Q, et al. 1993. Basic characteristics of recent tectonic stress field in southwest China. Acta Seismologica Sinica, 6(4):843-855.
[32]  Xu Z Q, Hou L W, Wang Z X, et al. 1992. Oregenic Process of the Songpan-Garze Orogenic Belt of China (in Chinese). Beijing:Geological Publishing House, 1-188.
[33]  Yang S X, Yao R, Cui X F, et al. 2012. Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt. Chinese J. Geophys. (in Chinese), 55(12):4207-4217, doi:10.6038/j.issn.0001-5733.
[34]  Yi G X, Wen X Z. 2000. Earthquake recurrence on whole active fault zones and its relation to that on individual fault-segments. Acta Seismologica Sinica, 13(5):563-574.
[35]  Yi G X, Fan J, Wen X Z. 2005. Study on faulting behavior and fault-segments for potential strong earthquake risk along the central-southern segment of Xianshuihe fault zone based on current seismicity. Earthquake (in Chinese), 25(1):58-66.
[36]  Yi G X, Wen X Z, Su Y J. 2008. Study on the potential strong-earthquake risk for the eastern boundary of the Sichuan-Yunnan active faulted-block, China. Chinese J. Geophys. (in Chinese), 51(6):1719-1725.
[37]  Zhang G W, Lei J S, Liang S S, et al. 2014. Relocations and focal mechanism solutions of the 3 August 2014 Ludian, Yannan Ms6.5 earthquake sequences. Chinese J. Geophys. (in Chinese), 57(9):3018-3027, doi:10.6038/cjg20140926.
[38]  Zhang J T, Yao G L. 1990. The characteristic of segmented activity of Xianshuihe fault zone. Crustal Deformation and Earthquake (in Chinese), 10(3):54-60.
[39]  Zhao Z, Zhang R S. 1987. The compilation of regional travel time table in Sichuan. Earthquake Research in Sichuan (in Chinese), (3):29-35.
[40]  Zhou R, He Y, Huang Z, et al. 2000. Slip rate and recurrence interval of strong earthquake of Qianning -Kangding segment on Xianshuihe fault. Earth Science Frontiers, 7:297-298.
[41]  Zhou R J, He Y L, Huang Z Z, et al. 2001. The slip rate and strong earthquake recurrence interval on the Qianning-Kangding segment on the Xianshuihe fault zone. Acta Seismologica Sinica (in Chinese), 23(3):250-261.
[42]  Zhu L P, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int., 148(3):619-627.
[43]  Zhu L P, Ben-Zion Y. 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophys. J. Int., 194(2):839-843, doi:10.1093/gji/ggt137.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133