全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

芦山震区地壳三维P波速度精细结构及地震重定位研究

DOI: 10.6038/cjg20150408, PP. 1179-1193

Keywords: 芦山地震,双差地震层析成像,三维P波速度结构,震源参数,芦山震源区

Full-Text   Cite this paper   Add to My Lib

Abstract:

联合芦山地震序列5285个地震的50711条P波初至绝对到时数据及7294691条高质量的相对到时数据,利用双差地震层析成像方法联合反演了芦山震源区高分辨率的三维P波速度精细结构及5115个地震震源参数.反演结果表明,芦山主震震中为30.28°N,103.98°E,震源深度为16.38km,主震南西段余震扩展长度约23km,余震前缘倾角较和缓,主震北东段余震扩展长度约12km,余震前缘呈铲形,倾角较陡.芦山震源区P波三维速度结构表现出明显的横向不均匀性,近地表处的P波速度异常与地形起伏及地质构造密切相关:宝兴杂岩对应明显的高速异常,此异常由地表延伸到地下15km深度附近,而中新生代岩石表现为低速异常;大兴附近区域亦显示出小范围的大幅度高速异常,宝兴高速异常与大兴高速异常在10km深度附近相连,进而增加了芦山震源区的高低速异常对比幅度.在芦山主震的南西、北东两段速度结构存在着较大差异,芦山主震在水平向位于宝兴及大兴高速异常所包围的低速异常的前缘.主震南西段余震主要发生在倾向北西的高低速异常转换带上并靠近低速一侧,其下盘为低速异常,上盘为高速异常.而芦山主震北东段的余震主要分布在宝兴高速体与大兴高速体之间,主发震层向北西倾斜,主发震层上方的宝兴高速异常下边界出现一条南东倾向的反冲地震带,两地震带呈"y"型分布.

References

[1]  Burchfiel B C, Chen Z, Liu Y, et al. 1995. Tectonics of the Longmen Shan and adjacent regions. Central China. Int. Geol. Rev., 37(8):661-735.
[2]  Lei J S, Zhang G W, Xie F R. 2014b. The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence:tectonic implications. Earthquake Science, 27(1):15-25.
[3]  Lei J S, Zhao D P, Su J R, et al. 2009. Fine seismic structure under the Longmenshan fault zone and the mechanism of the large Wenchuan earthquake. Chinese J. Geophys. (in Chinese), 52(2):339-345.
[4]  Li C Y, Xu X W, Gan W J, et al. 2013. Seismogenic structures associated with the 20 April 2013 Ms Lushan earthquake, Sichuan province. Seismology and Geology (in Chinese), 35(3):671-683.
[5]  Li Z W, Liu S G, Chen H D, et al. 2008. Structural segmentation and zonation and differential deformation across and along the Lomgmen thrust belt, West Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition) (in Chinese), 35(4):440-454.
[6]  Liu B Y, Shi B P, Lei J S. 2013. Effect of Wenchuan earthquake on probabilities of earthquake occurrence of Lushan and surrounding faults. Acta Seismol. Sinica (in Chinese), 35(5):642-651.
[7]  Liu C, Zhang Y, Xu L S, et al. 2008. A new technique for moment tensor inversion with applications to the 2008 Wenchuan Ms8.0 earthquake sequence. Acta Seismol. Sinica (in Chinese), 30(4):329-339.
[8]  Liu J, Yi G X, Zhang Z W, et al. 2013. Introduction to the Lushan, Sichuan M7.0 earthquake on 20 April 2013. Chinese J. Geophys. (in Chinese), 56(4):1404-1407, doi:10.6038/cjg20130434.
[9]  Miao M, Zhu S B. 2013. The static Coulomb stress change of the 2013 Lushan Ms7.0 earthquake and its impact on the spatial distribution of aftershocks. Acta Seismol. Sinica (in Chinese), 35(5):619-631.
[10]  Parsons T, Ji C, Kirby E. 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 454(7203):509-510.
[11]  Pei S P, Su J R, Zhang H J, et al. 2010. Three-dimensional seismic velocity structure across the 2008 Wenchuan Ms8.0 earthquake, Sichuan, China. Tectonophysics, 491(1-4):211-217.
[12]  Royden L H, Clark B C, King R W, et al. 1997. Surface deformation and lower crustal flow in Eastern Tibet. Science, 276(5313):788-790.
[13]  Su J R, Zheng Y, Yang J S, et al. 2013. Accurate locating of the Lushan, Sichuan M7.0 earthquake on 20 April 2013 and its aftershocks and analysis of the seismogenic structure. Chinese J. Geophys. (in Chinese), 56(8):2636-2644, doi:10.6038/cjg20130813.
[14]  Thurber C H. 1983. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res., 88(B10):8226-8236.
[15]  Zhang H J, Thurber C H. 2003. Double-difference tomography:The method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am., 93(5):1875-1889.
[16]  Zhang H J, Thurber C H. 2006. Development and applications of double-difference seismic tomography. Pure and Applied Geophys., 163(2-3):273-403.
[17]  Zhang Y, Feng W P, Xu L S, et al. 2009. Spatio-temporal rupture process of the 2008 great Wenchuan earthquake. Sci. China Ser. D:Earth Sci., 52(2):145-154.
[18]  Zhao D P, Hasegawa A, Horiuchi S. 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res., 97(B13):19909-1992.
[19]  Zheng X F, Ouyang B, Zhang D N, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese J. Geophys. (in Chinese), 52(5):1412-1417, doi:10.3969/j.issn.0001-5733.2009.05.031.
[20]  Burchfiel B C, Royden L H, Vander Hilst R D, et al. 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People''s Republic of China. GSA Today, 18(7):4-11.
[21]  Chen Y T, Yang Z X, Zhang Y, et al. 2013. From 2008 Wenchuan earthquake to 2013 Lushan earthquake. Sci. China Ser. D:Earth Sci. (in Chinese), 43:1064-1072.
[22]  Cook K L, Royden L H. 2008. The role of crustal strength variations in shaping orogenic plateaus, with application to Tibet. J. Geophys. Res., 113(B8):B08407, doi:10.1029/2007JB005457.
[23]  Eberhart P D. 1986. Three-dimensional velocity structure in the northern California Coast Ranges from inversion of local earthquake arrival times. Bull. Seismol. Soc. Am.,76(4):1025-1052.
[24]  Eberhart P D. 1993. Local Earthquake Tomography:Earthquake Source Regions, in Seismic Tomography:Theory and Practice. London:Chapman and Hall, 613-643.
[25]  Fang L H, Wu J P, Wang W L, et al. 2013. Relocation of the mainshock and aftershock sequences of Ms7.0 Sichuan Lushan earthquake. Chin. Sci. Bull., 58(28-29):3451-3459.
[26]  Gao J W. 2012. Geometrics and kinematics of structure in southwest Sichuan Basin:indications to the geo-dynamic settings of the southeast margin of Qinghai-Tibet Plateau (in Chinese). Beijing:China University of Geosciences.
[27]  Han L B, Zeng X F, Jiang C S, et al. 2014. Focal Mechanisms of the 2013 Mw6.6 Lushan, China Earthquake and High-Resolution Aftershock Relocations. Seismological Research Letter, 85(1):8-14.
[28]  Huang R Q, Wang Z, Pei S P, et al. 2009. Crustal ductile flow and its contribution to tectonic stress in Southwest China. Tectonophysics, 473(3-4):476-489.
[29]  Kissling E, Ellsworth W L, Eberhart-Phillips D, et al. 1994. Initial reference models in local earthquake tomography. J. Geophys. Res., 99(B10):19635-19646.
[30]  Kissling E, Solarino S, Cattaneo M. 1995. Improved seismic velocity reference model from local earthquake data in Northwestern Italy. Terra Nova, 7(5):528-534.
[31]  Lei J S, Li Y, Xie F L, et al. 2014a. Pn anisotropic tomography and dynamics under eastern Tibetan plateau. J. Geophys. Res., 119(3):2174-2198.
[32]  Wang X N, Yu X W, Zhang W B. 2014. Seismic tomography in Zhaotong region and analysis of seismotectonic in Yiliang Area. Progress in Geophysics (in Chinese), 29(4):1573-1580.
[33]  Wang X N, Yu X W, Zhang W B, et al. 2015. 1D P wave velocity model in south Longmenshan fault zones. J. Seismol. Res. (in Chinese), 38(1):16-24.
[34]  Wang Z, Fukao Y, Pei S P. 2009. Structural control of rupturing of the Mw7.9 2008 Wenchuan Earthquake, China. Earth and Planetary Science Letters, 279(2):131-138.
[35]  Xu X W, Wen X Z, Han Z J, et al. 2013. Lushan Ms7.0 earthquake:A blind reserve-fault event. Chin. Sci. Bull., 58(28-29):3437-3443.
[36]  Yang Z X, Waldhauser F, Chen Y T, et al. 2005. Double-difference relocation of earthquakes in central-western China, 1992-1999. J. Seismol., 9(2):241-264.
[37]  Zhan Y, Zhao G Z, Unsworth M, et al. 2013. Deep structure beneath the southwestern section of the Longmenshan fault zone and seimogenetic context of the 4.20 Lushan Ms7.0 earthquake. Chin. Sci. Bull., 58(28-29):3467-3474.
[38]  Zhang G W, Lei J S. 2013. Relocations of Lushan, Sichuan strong earthquake (Ms7.0) and its aftershocks. Chinese J. Geophys. (in Chinese), 56(5):1764-1771, doi:10.6038/cjg20130534.
[39]  Zhang H J, Pei S, Wang H, et al. 2013. Relocation of Lushan aftershock and detailed image of the Lushan seismic area (in Chinese). 2013 China Geophysics Society.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133