全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

位场各阶垂向导数换算的新正则化方法

DOI: 10.6038/cjg20150426, PP. 1400-1410

Keywords: 位场,垂向导数,ISVD算法,Tikhonov正则化,径向平均功率谱,向下延拓

Full-Text   Cite this paper   Add to My Lib

Abstract:

位场垂向导数大量应用于位场数据处理与解释中.当前广泛采用的位场各阶垂向导数换算方法为基于Laplace方程并结合波数域和空间域方法的具有递推特性的ISVD(integratedsecondverticalderivative)算法.本文在位场垂向导数换算的正则化方法和径向平均功率谱的基础上,提出一种位场各阶垂向导数换算的新正则化方法.新正则化方法仅需通过分析位场径向平均功率谱来确定一个截止波数,即可稳定换算位场各阶垂向导数.理论模型和实测数据实验结果表明:(1)新正则化方法物理意义明确、计算简单,且各阶垂向导数换算的稳定性和精度明显优于ISVD算法;(2)在用新正则化方法求得各阶垂向导数的基础上,利用泰勒级数法可以获得大深度、高精度的位场向下延拓结果.

References

[1]  Bian G L, Zhai G J, Gao J Y, et al. 2014. Improved Taylor series approach for stable downward continuation of total strength of geomagnetic field. Acta Geodaetica et Cartographica Sinica (in Chinese), 43(1):30-36.
[2]  Clarke G K C. 1969. Optimum second-derivative and downward-continuation filters. Geophysics, 34(3):424-437.
[3]  Cooper G R J. 2004. Euler deconvolution applied to potential field gradients. Exploration Geophysics, 35(3):165-170.
[4]  Cooper G R J, Cowan D R. 2003. The application of fractional calculus to potential field data. Exploration Geophysics, 34(2):51-56.
[5]  Cooper G R J, Cowan D R. 2004. Filtering using variable order vertical derivatives. Computers & Geosciences, 30(5):455-459.
[6]  Gupta V K, Ramani N. 1982. Optimum second vertical derivatives in geologic mapping and mineral exploration. Geophysics, 47(12):1706-1715.
[7]  Hou Z C. 1981. Filtering of smooth compensation. Geophysical Prospecting for Petroleum (in Chinese), 20(2):22-29.
[8]  Liu D J, Yu H L, Li H X. 2012. Comment on "Magnetic potential spectrum analysis and calculating method of magnetic anomaly derivatives based on discrete cosine transform". Progress in Geophysics (in Chinese), 27(5):2256-2261, doi:10.6038/j.issn.1004-2903.2012.05.054.
[9]  Ma G Q, Huang D N, Yu P, et al. 2012. Application of improved balancing filters to edge identification of potential field data. Chinese J. Geophys. (in Chinese), 55(12):4288-4295, doi:10.6038/j.issn.0001-5733.2012.12.040.
[10]  Ma G Q, Huang D N, Du X J, et al. 2014a. Hartley transform in the application of the derivatives of potential field (gravity and magnetic) data. Journal of Jilin University:Earth Science Edition (in Chinese), 44(1):328-335.
[11]  Ma G Q, Huang D N, Li L L, et al. 2014b. A normalized local wavenumber method for interpretation of gravity and magnetic anomalies. Chinese J. Geophys. (in Chinese), 57(4):1300-1309, doi:10.6038/cjg20140427.
[12]  Marson I, Klingele E. 1993. Advantages of using the vertical gradient of gravity for 3-D interpretation. Geophysics, 58(11):1588-1595.
[13]  Maus S, Dimri V. 1995. Potential field power spectrum inversion for scaling geology. Journal of Geophysical Research, 100(B7):12605-12616.
[14]  Paoletti V, Ialongo S, Florio G, et al. 2013. Self-constrained inversion of potential fields. Geophysical Journal International, 195(2):854-869.
[15]  Pa?teka R, Richter F P, Karcol R, et al. 2009. Regularized derivatives of potential fields and their role in semi-automated interpretation methods. Geophysical Prospecting, 57(4):507-516.
[16]  Pawlowski R S. 1995. Preferential continuation for potential-field anomaly enhancement. Geophysics, 60(2):390-398.
[17]  Ravat D, Pignatelli A, Nicolos I, et al. 2007. A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophysical Journal International, 169(2):421-434.
[18]  Roy I G. 2013. On computing gradients of potential field data in the space domain. Journal of Geophysics and Engineering, 10(3):035007.
[19]  Spector A, Grant F S. 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35(2):293-302.
[20]  Sundararajan N, Brahmam G R. 1998. Spectral analysis of gravity anomalies caused by slab-like structures:A Hartley transform technique. Journal of Applied Geophysics, 39(1):53-61.
[21]  Trompat H, Boschetti F, Hornby P. 2003. Improved downward continuation of potential field data. Exploration Geophysics, 34(4):249-256.
[22]  Verduzco B, Fairhead J D, Green C M, et al. 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2):116-119.
[23]  Wang B Z. 1996. Computing the vertical second derivative and upward continuation of gravity anomaly by spline function method. Oil Geophysical Prospecting (in Chinese), 31(3):415-422.
[24]  Wang B Z, Krebes E S, Ravat D. 2008. High-precision potential-field and gradient-component transformations and derivative computations using cubic B-splines. Geophysics, 73(5):135-142.
[25]  Wang S R, Yu T, Sun J C. 1987. Calculation of higher even vertical derivatives of potential field by spline function B. Geophysical Prospecting for Petroleum (in Chinese), 26(2):105-115.
[26]  Wang W Y, Qiu Z Y, Yang Y, et al. 2010. Some advances in the edge recognition of the potential field. Progress in Geophysics (in Chinese), 25(1):196-210, doi:10.3969/j.issn.1004-2903.2010.01.027.
[27]  Wang Y F. 2007. Computational Methods for Inverse Problems and Their Applications (in Chinese). Beijing:Higher Education Press.
[28]  Wang Y G, Zhang F X, Liu C, et al. 2013. Edge detection in potential fields using optimal auto-ratio of vertical gradient. Chinese J. Geophys. (in Chinese), 56(7):2463-2472, doi:10.6038/cjg20130732.
[29]  Wei Y L, Luo Y. 2011. 2D potential field transformation based on Hartley transform. Progress in Geophysics (in Chinese), 25(6):2102-2108, doi:10.3969/j.issn.1004-2903.2010.06.029.
[30]  Xu S Z. 1984a. The calculation of the gravitational anomaly and its derivative of the geologic body with arbitrary configuration by boundary-elements method. Geophysical Prospecting for Petroleum (in Chinese), 23(3):22-37.
[31]  Xu S Z. 1984b. The calculation of the vertical component of 2D gravitational field and its second derivative by finite element method. Oil Geophysical Prospecting (in Chinese), (5):486-476.
[32]  Xu S Z, Yang J Y, Yang C F, et al. 2007. The iteration method for downward continuation of a potential field from a horizontal plane. Geophysical Prospecting, 55(6):883-889.
[33]  Yao C L, Huang W N, Guan Z N. 1997. Fast splines conversion of curved-surface potential field and vertical gradient data into horizontal-plane data. Oil Geophysical Prospecting (in Chinese), 32(2):229-236.
[34]  Zeng H L. 2005. Gravity Field and Gravity Exploration (in Chinese). Beijing:Geological Publishing House.
[35]  Zhai G J, Bian G L, Huang M T. 2011. A new method to calculate the vertical derivatives of total field magnetic anomaly. Acta Geodaetica et Cartographica Sinica (in Chinese), 40(6):671-678.
[36]  Zhang F X, Zhang F Q, Meng L S, et al. 2007. Magnetic potential spectrum analysis and calculating method of magnetic anomaly derivatives based on discrete cosine transform. Chinese J. Geophys. (in Chinese), 50(1):297-304.
[37]  Zhang H L, Hu X Y, Liu T Y. 2012. Fast inversion of magnetic source boundary and top depth via second order derivative. Chinese J. Geophys. (in Chinese), 55(11):3839-3847, doi:10.6038/j.issn.0001-5733.2012.11.031.
[38]  Zhang H L, Ravat D, Hu X Y. 2013. An improved and stable downward continuation of potential field data:The truncated Taylor series iterative downward continuation method. Geophysics, 78(5):J75-J86.
[39]  Cowan D R, Cooper G R J. 2005. Separation filtering using fractional order derivatives. Exploration Geophysics, 36(4):393-396.
[40]  Doo W B, Hsu S K, Yeh Y C. 2007. A derivative-based interpretation approach to estimating source parameters of simple 2D magnetic sources from Euler deconvolution, the analytic-signal method and analytical expressions of the anomalies. Geophysical Prospecting, 55(2):255-264.
[41]  Evjen H M. 1936. The place of the vertical gradient in gravitational interpretations. Geophysics, 1(1):127-136.
[42]  Fedi M, Florio G. 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical Prospecting, 49(1):40-58.
[43]  Fedi M, Florio G. 2002. A stable downward continuation by using the ISVD method. Geophysical Journal International, 151(1):146-156.
[44]  Guang Z L. 2005. Geomagnetic Field and Magnetic Exploration (in Chinese). Beijing:Geological Publishing House.
[45]  Gunn P J, FitzGerald D, Yassi N, et al. 1997. New algorithms for visually enhancing airborne geophysical data. Exploration Geophysics, 28(2):220-224.
[46]  Guo L H, Meng X H, Shi L, et al. 2012. Preferential filtering method and its application to Bouguer gravity anomaly of Chinese continent. Chinese J. Geophys. (in Chinese), 55(12):4078-4088, doi:10.6038/j.issn.00015733.2012.12.020.
[47]  Guo L H, Meng X H, Chen Z X, et al. 2013. Preferential filtering for gravity anomaly separation. Computers & Geosciences, 51:247-254.
[48]  Zhang F X, Meng L S, Zhang F Q, et al. 2006. A new method for spectral analysis of the potential field and conversion of derivative of gravity-anomalies:cosine transform. Chinese J. Geophys. (in Chinese), 49(1):244-248.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133