全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用能量累积法检测地震波雷达信号

DOI: 10.6038/cjg20150414, PP. 1259-1268

Keywords: 地震波雷达,线性调频,能量聚集,能量累积,波速结构,波速变化,绿色环保

Full-Text   Cite this paper   Add to My Lib

Abstract:

将具有高度重复性的地震波雷达长时间向地壳内发射线性调频信号,经过地下介质的传播后到达地面,用地震仪器在监测点和检测点记录下来,通过分析数据来了解地壳速度结构及波速变化.线性调频信号是一种非平稳信号,它的频率随时间线性变化,有很好的能量聚集性,非常适合做时间-频率分析.本文用短时傅里叶变换对监测点的信号进行时间-频率分析,以检验地震波雷达发射信号的时间和频率是否和控制系统一致.通过Wigner-Ville分布将地震波雷达发射的信号能量聚集在线性调频直线上,再用Hough变换累积聚集的能量形成波峰,按照线性调频直线的倾角提取波峰所在行,计算到时后构成地震波走时曲线图.用靠近本次实验地点的H-21剖面得到的地壳速度结构正演该测线的Pg、Sg、PmP和SmS的折合走时曲线,并与用能量累积法提取出的地震波走时曲线进行对比,分析结果表明:地震波雷达发射线性调频信号的时间和频率都符合控制要求,重复性高达99.9%以上,可以清晰地分辨出Pg、Sg震相,并且PmP和SmS震相可辨.

References

[1]  Li Z W, You Q Y, Ni S D, et al. 2013. Waveform retrieval and phase identification for seismic data from the CASS experiment. Pure and Applied Geophysics, 170(5):815-830.
[2]  Liu X K, Cui R S, Wang H T, et al. 2013. Detecting of controlled accurate seismic source signal using Wigner-Hough transformation. Earthquake (in Chinese), 33(3):33-42.
[3]  Peng C Y, Yang J S, Xue B, et al. 2013. Research on correlation between early-warning parameters and magnitude for the Wenchuan Earthquake and its aftershocks. Chinese J. Geophys. (in Chinese), 56(10):3404-3415, doi:10.6038/cjg20131016.
[4]  Peng C Y, Zhu X Y, Yang J S, et al. 2013a. Development of an integrated onsite earthquake early warning system and test deployment in Zhaotong, China. Computers & Geosciences, 56:170-177, doi:10.1016/j.cageo.2013.03.018.
[5]  Peng C Y, Yang J S, Xue B, et al. 2014a. Exploring the feasibility of earthquake early warning using records of the 2008 Wenchuan earthquake and its aftershocks. Soil Dynamics and Earthquake Engineering, 57:86-93, doi:10.1016/j.soildyn.2013.11.005.
[6]  Peng C Y, Yang J S, Zheng Y, et al. 2014b. A τc magnitude estimation of the 20 April 2013 Lushan earthquake, Sichuan, China. Science China Earth Sciences, 57(12):3118-3124, doi:10.1007/s11430-014-4971-8.
[7]  Alekseev A S, Chichinin I S, Korneev V A. 2005. Powerful low-frequency vibrators for active seismology. Bulletin of the Seismological Society of America, 95(1):1-17.
[8]  Chen Y, Zhang W, Chen H L, et al. 2006. Seismic radar. Progress in Geophys. (in Chinese), 21(1):1-5.
[9]  Cheng Z L, Zheng S H, Liu J. 2007. Application Research of Digital Seismological Observation Data (in Chinese). Beijing:Seismological Press.
[10]  Department of science & earthquake monitoring of China Earthquake Administration. 1995. Earthquake Observation Technology (in Chinese). Beijing:Seismological Press.
[11]  Feng R, Pang Q Y, Fu Z X, et al. 1976. Variations of Vp/Vs before and after the Haicheng Earthquake of 1975. Chinese J. Geophys. (in Chinese), 19(4):295-305.
[12]  Feng R. 1977. On the variations of the velocity ratio before and after the Xinfengjiang reservoir impounding earthquake of M=6.1. Chinese J. Geophys. (in Chinese), 20(3):211-221.
[13]  Hu C H, Zhou T, Xia Q B, et al. 2002. System Analysis & Design Based on MATLAB-Time-Frequency (in Chinese). Xi''an:Xi''an Electronic and Science University Press.
[14]  Ikuta R, Yamaoka K. 2004. Temporal variation in the shear wave anisotropy detected using the Accurately Controlled Routinely Operated Signal System (ACROSS). Journal of Geophysical Research, 109(B9):B09305, doi:10.1029/2003JB002901.
[15]  Lai X L, Zhang X K, Sun Y. 2006. The complexity feature of crust-mantle boundary in Zhangbei seismic region and its tectonic implication. Acta Seismologica Sinica (in Chinese), 28(3):230-237.
[16]  Li M X, Liu J. 2006. Study on velocity ratio (Vp/Vs) anomaly of earthquake sequences in Yunnan region. Earthquake (in Chinese), 26(1):26-34.
[17]  Peng C Y, Yang J S, Xue B, et al. 2015. A low-latency data acquisition system for earthquake early warning. Earthquake (in Chinese), 35(1):140-148.
[18]  Song J L, Ten Brink U. 2004. RayGUI 2.0:A Graphical User Interface for Interactive Forward and Inversion Ray-Tracing:USGS Open-File Report 2004-1426. New York:BiblioGov.
[19]  Tang X H, Li Q L. 2008. Time-frequency & wavelet transfer (in Chinese). Beijing:Science Press.
[20]  Yang W, Wang B S, Ge H K, et al. 2013. Characteristics and signal detection method of accurately controlled routinely operated signal system. Journal of China University of Petroleum (Edition of Natural Science) (in Chinese), 37(1):50-55, 69, doi:10.3969/j.issn.1673-5005.2013.01.008.
[21]  Zelt C A, Smith R B. 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int., 108(1):16-34.
[22]  Zhang X D, Bao Z. 1998. Non staionary signal analysis & processing (in Chinese). Beijing:National Defense Industry Press.
[23]  Zhao C L, Lu C, Hao T Y, et al. 2013. A study of the high-precision modular lightweight small vibrator. Chinese J. Geophys. (in Chinese), 56(11):3690-3698, doi:10.6038/cjg20131110.
[24]  Zhuang C T. 2002. A technical measure to study and predict disastrous earthquakes occurring directly beneath big cities. Recent Developments in World Seismology (in Chinese), (8):35-37.
[25]  Wang H T, Zhuang C T, Xue B, et al. 2009. Precisely and actively seismic monitoring. Chinese J. Geophys. (in Chinese), 52(7):1808-1815, doi:10.3969/j.issn.0001-5733.2009.07.015.
[26]  Yang W, Ge H K, Wang B S, et al. 2010. Velocity changes observed by the precisely controlled active source for the Mianzhu Ms5.6 earthquake. Chinese J. Geophys. (in Chinese), 53(5):1149-1157, doi:10.3969/j.issn.0001-5733.2010.05.016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133