Baardman R H, Verschuur D J, Van Borselen R G, et al. 2010. Estimation of primaries by sparse inversion using dual-sensor data. 80th Annual International Meeting, SEG, Expanded Abstracts,3468-3472.
[2]
Claerbout J F. 1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33(2): 264-269.
[3]
Feng F, Wang D L, Zhu H, et al. 2013. Estimating primaries by sparse inversion of the 3D curvelet transform and the L1-norm constraint. Applied Geophysics (in Chinese), 10(2): 201-209.
[4]
Lin T T Y, Herrmann F J. 2011. Estimating primaries by sparse inversion in a curvelet-like representation domain. 73rd EAGE Conference and Exhibition, EAGE, Extended Abstracts, H043.
[5]
Lin T T Y, Herrmann F J. 2013. Robust estimation of primaries by sparse inversion via one-norm minimization. Geophysics, 78(3): R133-R150.
[6]
Van Den Berg E, Friedlander M P. 2008. Probing the pareto frontier for basis pursuit solution. SIAM Journal on Scientific Computing, 31(2): 890-912.
[7]
Van Groenestijn G J A, Verschuur D J. 2009a. Estimating primaries by sparse inversion and application to near-offset data reconstruction. Geophysics, 74(3): A23-A28.
[8]
Van Groenestijn G J A, Verschuur D J. 2009b. Estimation of primaries and near-offset reconstruction by sparse inversion: marine data application. Geophysics, 74(6): R119-R128.
[9]
Van Groenestijn G J A, Verschuur D J. 2010. Estimation of primaries by sparse inversion from passive seismic data. Geophysics, 75(4): SA61-SA69.
[10]
Van Groenestijn G J A, Ross W. 2011. Primary estimation on OBC data by sparse inversion. 81th Annual International Meeting, SEG, Expanded Abstracts, 3531-3535.
[11]
Vasconcelos I, Snieder R. 2008a. Interferometry by deconvolution, Part 1—Theory for acoustic waves and numerical examples. Geophysics, 73(3): S115-S128.
[12]
Vasconcelos I, Snieder R. 2008b. Interferometry by deconvolution: Part 2—Theory for elastic waves and application to drill-bit seismic imaging. Geophysics, 73(3): S129-S141.
[13]
Wapenaar K, van der Neut J, Ruigrok E. 2008. Passive seismic interferometry by multidimensional deconvolution. Geophysics, 73(6): A51-A56.
[14]
Wapenaar K, van der Neut J, Ruigrok E, et al. 2011. Seismic interferometry by cross-correlation and by multi-dimensional deconvolution: a systematic comparison. Geophysical Journal International, 185(3): 1335-1364.
[15]
Ying L X, Demanet L, Candes E J. 2005. 3-D discrete curvelet transform. Proceedings SPIE 5914, Wavelets XI. San Diego: SPIE, 344-354.
[16]
Zhu H, Wang D L, Shi Z A, et al. 2012. Passive seismic imaging of seismic interferometry. Progress in Geophysics (in Chinese), 27(2): 496-502, doi: 10.6038/j.issn.1004-2903.2012.02.012.