全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

L1范数约束被动源数据稀疏反演一次波估计

DOI: 10.6038/cjg20150228, PP. 674-684

Keywords: 被动源,稀疏反演,L1正则化,凸优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于被动源地震数据,运用常规的互相关算法得到的虚拟炮记录中,不仅含有一次波反射信息,还包括了表面相关多次波.然而,通过传统的被动源数据稀疏反演一次波估计(EPSI)方法,可以求得只含有一次波,不含表面相关多次波的虚拟炮记录.本文改进了传统的被动源数据稀疏反演一次波估计问题的求解方法,将被动源稀疏反演一次波估计求解问题转化为双凸L1范数约束的最优化求解问题,避免了在传统的稀疏反演一次波估计过程中用时窗防止反演陷入局部最优化的情况.在L1范数约束最优化的求解过程中,又结合了2DCurvelet变换和小波变换,在2DCurvelet-wavelet域中,数据变得更加稀疏,从而使求得的结果更加准确,成像质量得到了改善.通过简单模型和复杂模型,验证了本文提出方法的有效性.

References

[1]  Baardman R H, Verschuur D J, Van Borselen R G, et al. 2010. Estimation of primaries by sparse inversion using dual-sensor data. 80th Annual International Meeting, SEG, Expanded Abstracts,3468-3472.
[2]  Claerbout J F. 1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33(2): 264-269.
[3]  Feng F, Wang D L, Zhu H, et al. 2013. Estimating primaries by sparse inversion of the 3D curvelet transform and the L1-norm constraint. Applied Geophysics (in Chinese), 10(2): 201-209.
[4]  Lin T T Y, Herrmann F J. 2011. Estimating primaries by sparse inversion in a curvelet-like representation domain. 73rd EAGE Conference and Exhibition, EAGE, Extended Abstracts, H043.
[5]  Lin T T Y, Herrmann F J. 2013. Robust estimation of primaries by sparse inversion via one-norm minimization. Geophysics, 78(3): R133-R150.
[6]  Van Den Berg E, Friedlander M P. 2008. Probing the pareto frontier for basis pursuit solution. SIAM Journal on Scientific Computing, 31(2): 890-912.
[7]  Van Groenestijn G J A, Verschuur D J. 2009a. Estimating primaries by sparse inversion and application to near-offset data reconstruction. Geophysics, 74(3): A23-A28.
[8]  Van Groenestijn G J A, Verschuur D J. 2009b. Estimation of primaries and near-offset reconstruction by sparse inversion: marine data application. Geophysics, 74(6): R119-R128.
[9]  Van Groenestijn G J A, Verschuur D J. 2010. Estimation of primaries by sparse inversion from passive seismic data. Geophysics, 75(4): SA61-SA69.
[10]  Van Groenestijn G J A, Ross W. 2011. Primary estimation on OBC data by sparse inversion. 81th Annual International Meeting, SEG, Expanded Abstracts, 3531-3535.
[11]  Vasconcelos I, Snieder R. 2008a. Interferometry by deconvolution, Part 1—Theory for acoustic waves and numerical examples. Geophysics, 73(3): S115-S128.
[12]  Vasconcelos I, Snieder R. 2008b. Interferometry by deconvolution: Part 2—Theory for elastic waves and application to drill-bit seismic imaging. Geophysics, 73(3): S129-S141.
[13]  Wapenaar K, van der Neut J, Ruigrok E. 2008. Passive seismic interferometry by multidimensional deconvolution. Geophysics, 73(6): A51-A56.
[14]  Wapenaar K, van der Neut J, Ruigrok E, et al. 2011. Seismic interferometry by cross-correlation and by multi-dimensional deconvolution: a systematic comparison. Geophysical Journal International, 185(3): 1335-1364.
[15]  Ying L X, Demanet L, Candes E J. 2005. 3-D discrete curvelet transform. Proceedings SPIE 5914, Wavelets XI. San Diego: SPIE, 344-354.
[16]  Zhu H, Wang D L, Shi Z A, et al. 2012. Passive seismic imaging of seismic interferometry. Progress in Geophysics (in Chinese), 27(2): 496-502, doi: 10.6038/j.issn.1004-2903.2012.02.012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133