Wobus C W, Hodges K V, Whipple K X. 2003. Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology, 31(10): 861-864, doi:10.1130/G19730.1.
[2]
Wobus C W, Whipple K X, Hodges K V. 2006. Neotectonics of the central Nepalese Himalaya: Constraints from geomorphology, detrital 40Ar/39Ar thermochronology, and thermal modeling. Tectonics, 25(4): C4011, doi: 10.1029/2005TC001935.
[3]
Yang Y C, Li B Y, Yin Z S, et al. 1983. Geomorphology of Xizang (Tibet) (in Chinese). Beijing: Science Press.
[4]
Yu X J, Ji J Q, Gong J F, et al. 2011. Evidences of rapid erosion driven by climate in the Yarlung Zangbo (Tsangpo) Great Canyon, the eastern Himalayan syntaxis. Chinese Science Bulletin, 56(11): 1123-1130,doi: 10.1007/s11434-011-4419-x.
[5]
Zhang P Z, Molnar P, Downs W R. 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 410(6831): 891-897, doi: 10.1038/35073504.
[6]
Zhang Z Z, Deng W M. 1981. Intermediate-Acid Intrusive Rocks of Bome-Chayu Region. In: Comprehensive Scientific Expedition of Tibet Plateau of Chinese Academy of Sciences. Tibet Magmatism and Metamorphism (in Chinese). Beijing: Science Press, 112-130.
[7]
Zhong D L, Ding L. 1996. Discovery of high-pressure basic granulite in Namjagbarwa area, Tibet, China. Chinese Science Bulletin, 41(1): 87-88.
[8]
Zheng D W, Zhang P Z, Wan J L, et al. 2006. Tectonic events, climate and conglomerate: example from Jishishan mountain and Linxia basin(in Chinese). Quaternary Sciences, 26(1): 63-69,doi: 10.3321/j.issn:1001-7410.2006.01.008.
[9]
Amato J M, Pavlis T L. 2010. Detrital zircon ages from the Chugach terrane, southern Alaska, reveal multiple episodes of accretion and erosion in a subduction complex. Geology, 38(5): 459-462,doi: 10.1130/G30719.1.
[10]
Avdeev B, Niemi N A, Clark M K. 2011. Doing more with less: Bayesian estimation of erosion models with detrital thermochronometric data. Earth and Planetary Science Letters, 305(3-4): 385-395,doi:10.1016/j.epsl.2011.03.020.
[11]
Bennett G L, Molnar P, Mcardell B W, et al. 2013. Patterns and controls of sediment production, transfer and yield in the Illgraben. Geomorphology, 188: 68-82, doi: 10.1016/j.geomorph.2012.11.029.
[12]
Braun J. 2002. Quantifying the effect of recent relief changes on age-elevation relationships. Earth and Planetary Science Letters, 200(3-4): 331-343,doi:10.1016/S0012-821X(02)00638-6.
[13]
Braun J, Sambridge M. 1997. Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization. Basin Research, 9(1): 27-52,doi: 10.1046/j.1365-2117.1997.00030.x.
[14]
Braun J, van der Beek P, Batt G. 2006. Quantitative Thermochronology. Cambridge: Cambridge University Press.
[15]
Brewer I D, Burbank D W, Hodges K V. 2003. Modelling detrital cooling-age populations: insights from two Himalayan catchments. Basin Research, 15(3): 305-320, doi: 10.1046/j.1365-2117.2003.00211.x.
[16]
Chen J D, Sun S Z, Li D F, et al. 2006. Mathematical Statistics Lecture (second edition)(in Chinese). Beijing: Higher Education Press, 452.
[17]
Ding L, Zhong D L, Pan Y S, et al. 1995. Rapid uplift of eastern Himalayan Syntaxis from the fission track evidence. Chinese Science Bulletin (in Chinese), 40(16): 1497-1500.
[18]
Ding L, Zhong D L, Yin A, et al. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423-438,doi:10.1016/S0012-821X(01)00463-0.
[19]
Ehlers T A, Farley K A. 2003. Apatite (U-Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206(1-2): 1-14,doi:10.1016/S0012-821X(02)01069-5.
[20]
Enkelmann E, Zeitler P K, Pavlis T L, et al. 2009. Intense localized rock uplift and erosion in the St Elias orogen of Alaska. Nature Geoscience, 2(5): 360-363, doi: 10.1038/ngeo 502.
[21]
Enkelmann E, Ehlers T A, Zeitler P K, et al. 2011. Denudation of the Namche Barwa antiform, eastern Himalaya. Earth and Planetary Science Letters, 307(3-4): 323-333,doi:10.1016/j.epsl.2011.05.004.
[22]
Garver J I, Soloviev A V, Bullen M E, et al. 2000. Towards a more complete record of magmatism and exhumation in continental arcs, using detrital fission-track thermochrometry. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 25(6-7): 565-570,doi:10.1016/S1464-1895(00)00086-7.
[23]
Hanks T C, Andrews D J. 1989. Effect of far-field slope on morphologic dating of scarplike landforms. Journal of Geophysical Research: Solid Earth, 94(B1): 565-573, doi: 10.1029/JB094iB01p00565.
[24]
Hodges K V, Ruhl K W, Wobus C W, et al. 2005. 40Ar/39Ar thermochronology of detrital minerals. Reviews in Mineralogy and Geochemistry, 58(1): 239-257, doi: 10.2138/rmg.2005.58.9.
[25]
Lei Y L, Zhong D L, Jia C Z, et al. 2008. Late Cenozoic differential uplift-exhumation of batholith and propagation of uplpft recorded by fission track thermochronology in Chayu area, the southeast margin of the Tibetan plateau. Acta Petrologica Sinica (in Chinese), 24(2): 384-394.
[26]
Montgomery D R, Brandon M T. 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201(3-4): 481-489, doi: 10.1016/S0012-821X(02)00725-2.
[27]
Ouimet W B, Whipple K X, Granger D E. 2009. Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges. Geology, 37(7): 579-582, doi: 10.1130/G30013A.1.
[28]
Palumbo L, Hetzel R, Tao M X, et al. 2011. Catchment-wide denudation rates at the margin of NE Tibet from in situ-produced cosmogenic 10Be. Terra Nova, 23(1): 42-48, doi: 10.1111/j.1365-3121.2010.00982.x.
[29]
Pan B T, Geng H P, Hu X F, et al. 2010. The topographic controls on the decadal-scale erosion rates in Qilian Shan Mountains, N. W. China. Earth and Planetary Science Letters, 292(1-2): 148-157, doi: 10.1016/j.epsl.2010.01.030.
[30]
Reiners P W, Campbell I H, Nicolescu S, et al. 2005. (U-Th)/(He-Pb) double dating of detrital zircons. American Journal of Science, 305(4): 259-311,doi:10.2475/ajs.305.4.259.
[31]
Reiners P W. 2007. Thermochronologic approaches to paleotopography. Reviews in Mineralogy and Geochemistry, 66(1): 243-267, doi: 10.2138/rmg.2007.66.10.
[32]
Roering J J, Kirchner J W, Dietrich W E. 1999. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research, 35(3): 853-870, doi: 10.1029/1998WR900090.
[33]
Roering J J, Perron J T, Kirchner J W. 2007. Functional relationships between denudation and hillslope form and relief. Earth and Planetary Science Letters, 264(1-2): 245-258, doi: 10.1016/j.epsl.2007.09.035.
[34]
Ruhl K W, Hodges K V. 2005. The use of detrital mineral cooling ages to evaluate steady state assumptions in active orogens: An example from the central Nepalese Himalaya. Tectonics, 24(4): C4015, doi: 10.1029/2004TC001712.
[35]
Stock G M, Ehlers T A, Farley K A. 2006. Where does sediment come from? Quantifying catchment erosion with detrital apatite (U-Th)/He thermochronometry. Geology, 34(9): 725-728, doi: 10.1130/G22592.1.
[36]
Stock J D, Montgomery D R. 1996. Estimating palaeorelief from detrital mineral age ranges. Basin Research, 8(3): 317-327,doi: 10.1046/j.1365-2117.1996.00177.x.
[37]
Sun D X, Ji J Q, Zhang Z C, et al. 2009. AFT dating of detrital apatites from the Yarlung Zangbo Grea Canyon: Implications for its distinct geoporphological evolution. Chinese Science Bulletin (in Chinese), 54(23): 3738-3747.
[38]
Sun D X, Ji J Q, Liu Y D, et al. 2013. Detrital apatite fission track analysis and geomorphologic evolution of the Nujiang River area. Chinese Journal of Geology (in Chinese), 48(2): 501-514,doi: 10.3969/j.issn.0563-5020.2013.02.012.
[39]
Vermeesch P. 2007. Quantitative geomorphology of the White Mountains (California) using detrital apatite fission track thermochronology. Journal of Geophysical Research: Earth Surface, 112(F3): F3004, doi: 10.1029/2006JF000671.
[40]
von Blanckenburg F. 2005. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth and Planetary Science Letters, 237(3-4): 462-479, doi: 10.1016/j.epsl.2005.06.030.
[41]
Whipple K X, Tucker G E. 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth (1978—2012), 104(B8): 17661-17674,doi: 10.1029/1999JB900120.
[42]
Willett S D, Fisher D, Fuller C, et al. 2003. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11): 945-948,doi:10.1130/G19702.1.