全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

帕米尔—兴都库什深俯冲残留体对410km间断面起伏形态的影响

DOI: 10.6038/cjg20150110, PP. 125-133

Keywords: 帕米尔—兴都库什,410km间断面,N次根倾斜叠加

Full-Text   Cite this paper   Add to My Lib

Abstract:

受俯冲残留体影响的410km间断面起伏形态的研究对于确定地球内部物质构成及地球动力学过程具有重要作用.帕米尔—兴都库什俯冲区域拥有全球少有的中、深源地震,为研究410km间断面起伏提供了良好的资源.利用日本Hi-net地震台网和美国TA台阵记录的帕米尔—兴都库什俯冲区域的6个震源深度为154.0~220.9km、震级为Mb5.6~6.4的中、深源地震的短周期/宽频带波形资料,经过4次根倾斜叠加处理,获得了36组Hi-net子台网和TA记录资料的倾斜叠加灰度图,从中提取了与410km间断面相关的次生转换震相SdP,发现受俯冲残留体影响下的410km间断面的深度位于372~398km.较之持续俯冲的西太平洋地区海洋岩石圈,研究区域俯冲滞留体对于410km间断面的相变线的影响要小得多.

References

[1]  Ali A, Nakamura E, Yamamoto H. 2002. Sm-Nd mineral ages of pegmatite veins and their host rocks from Swat area, Chilas complex, northern Pakistan. J. Asian Earth Sci., 21(3): 331-339.
[2]  Bai L, Zhang T Z. 2015. Complex deformation pattern of the Pamir-Hindu Kush region inferred from multi-scale double-difference earthquake relocations. Tectonophysics, 638: 177-184, doi: 10.1016/j.tecto.2014.11.006.
[3]  Bina C R, Helffrich G. 1994. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res., 99(B8): 15853-15860.
[4]  Castle J C, Creager K C. 2000. Local sharpness and shear wave speed jump across the 660 km discontinuity. J. Geophys. Res., 105(B3): 6191-6200.
[5]  Collier J D, Helffrich G R. 1997. Topography of the "410" and "660" km seismic discontinuities in the Izu-Bonin Subduction Zone. Geophys. Res. Lett., 24(12): 1535-1538.
[6]  Collier J D, Helffrich G R, Wood B J. 2001. Seismic discontinuities and subduction zones. Phys. Earth Planet. Inter., 127(1-4): 35-49.
[7]  Deuss A. 2009. Global observations of mantle discontinuities using SS and PP precursors. Surv. Geophy., 30(4-5): 301-326.
[8]  Tian X B, Zhao D P, Zhang H S, et al. 2010. Mantle transition zone topography and structure beneath the central Tien Shan orogenic belt. J. Geophys. Res., 115(B10): B10308, doi: 10.1029/2008JB006229.
[9]  Tian X B, Teng J W, Zhang H S, et al. 2011. Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis. Phys. Earth Planet. Inter., 184(3-4): 186-193.
[10]  Villaseor A, Spakman W, Engdahl E R. 2003. Influence of regional travel times in global tomographic models. EGS-AGU-EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6-11 April 2003, abstract 8614.
[11]  Weidner D J, Wang Y B. 2000. Phase transformations: implications for mantle structure. // Karaoto S I, Forte A, Liebermann R, et al., Earth''s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, Vol. Geophysical Monograph Series 117. American Geophysical Union: 215-235.
[12]  Zang S X, Zhou Y Z. 2002. N-th root slant stack and its application in study of mantle discontinuities. Chinese J. Geophys. (in Chinese), 45(3): 407-415, doi: 10.3321/j.issn:0001-5733.2002.03.012.
[13]  Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter., 25(4): 297-356.
[14]  Engdahl E R, van der Hilst R, Buland R. 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seism. Soc. Am., 88(3): 722-743.
[15]  Flanagan M P, Shearer P M. 1998a. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. J. Geophys. Res., 103(B2): 2673-2692.
[16]  Flanagan M P, Shearer P M. 1998b. Topography on the 410-km seismic velocity discontinuity near subduction zones from stacking of sS, sP, and pP precursors. J. Geophys. Res., 103(B9): 21165-21182.
[17]  Fukao Y, Obayashi M. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res., 118(11): 5920-5938.
[18]  Gudmundsson , Sambridge M. 1998. A regionalized upper mantle (RUM) seismic model. J. Geophys. Res., 103(B4): 7121-7136.
[19]  Jin Z M, Zhang Z J, Wu Y, et al. 2013. Mantle transition zone and research methods. // Ding Z L ed. Research Methods in Solid Earth (in Chinese). Beijing: Science Publishing Company: 402-434.
[20]  Kanasewich E R, Hemmings C D, Alpaslan T. 1973. Nth-root stack nonlinear multichannel filter. Geophysics, 38(2): 327-338.
[21]  Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105(2): 429-465.
[22]  Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122(1): 108-124.
[23]  Koulakov I, Sobolev S V. 2006. A tomographic image of Indian lithosphere break-off beneath the Pamir-Hindu Kush region. Geophys. J. Int., 164(2): 425-440.
[24]  Li X, Sobolev S V, Kind R, et al. 2000. A detailed receiver function image of the upper mantle discontinuities in the Japan subduction zone. Earth Planet. Sci. Lett., 183(3-4): 527-541.
[25]  McFadden P L, Drummond B J, Karvis S. 1986. The N-th root stack: theory, application and examples. Geophysics, 51(10): 1879-1892.
[26]  Negredo A M, Replumaz A, Villaseor A, et al. 2007. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region. Earth Planet. Sci. Lett., 259(1-2): 212-225.
[27]  Ning J Y, Zang S X. 1990. The distribution of Earthquakes and Stress State in Pamir-Hindu Kush Regions. Chinese J. Geophys. (in Chinese), 33(6): 657-669.
[28]  Obayashi M, Sugioka H, Yoshimitsu J, et al. 2006. High temperature anomalies oceanward of subducting slabs at the 410 km discontinuity. Earth Planet. Sci. Lett., 243(1-2): 149-158.
[29]  Pegler G, Das S. 1998. An enhanced image of the Pamir-Hindu Kush seismic zone from relocated earthquake hypocentres. Geophys. J. Int., 134(2): 573-595.
[30]  Revenaugh J, Jordan T H. 1991. Mantle layering from ScS reverberations: 1. Waveform inversion of zeroth-order reverberations. J. Geophys. Res., 96(B12): 19749-19762.
[31]  Rost S, Thomas C. 2002. Array seismology: methods and applications. Rev. Geophys., 40(3): 2-1—2-27, doi: 10.1029/2000RG000100.
[32]  Sippl C, Schurr B, Yuan X, et al. 2013. Geometry of the Pamir-Hindu Kush intermediate-depth earthquake zone from local seismic data. J. Geophys. Res., 118(4): 1438-1457.
[33]  Song T R A, Helmberger D V, Grand S P. 2004. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature, 427(6974): 530-533.
[34]  Sun W B, He Y S, Chang Z, et al. 2009. The plate subduction and stress state in the Pamir-Hindu Kush region. Seism. Geol. (in Chinese), 31(2): 207-217.
[35]  Zang S X, Zhou Y Z, Ning J Y, et al. 2006. Multiple discontinuities near 660 km beneath Tonga area. Geophys. Res. Lett., 33(20): L20312, doi: 10.1029/2006GL027262.
[36]  Zhang L P, Shao Z G, Li Z H. 2014. Dynamic action of mutual subduction between the Indian and the Eurasia plates in Hindu Kush-Pamir region. Chinese J. Geophys. (in Chinese), 57(2): 459-471, doi: 10.6038/cjg20140212.
[37]  Zhang Z J, Yuan X H, Chen Y, et al. 2010. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth Planet. Sci. Lett., 292(3-4): 254-264.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133