Miziolek A W.Defense applications of nanomaterials[M].Oxford: Oxford University Press, 2003: 1-5.
[2]
莫红军, 赵凤起.纳米含能材料的概念与实践[J].火炸药学报, 2005,28: 79-82.MO Hong-jun, ZHAO Feng-qi.The concept and practice of energetic nanomaterials[J].Chinese Journal of Explosives and Propellants, 2005,28: 79-82.
Alla P, Polina U, Yurii F, et al.Nanomaterials for heterogeneous combustion[J].Propel Explos Pyrotech, 2004,29: 39-48.
[5]
Zhang Y, Liu D, Lu C.Preparation and characterization of reticular nano-HMX[J].Propel Explos Pyrotech, 2005,30: 438-441.
[6]
Tillotson T M, Hrubesh L W, Simpson R L, et al.Sol-gel processing of energetic materials[J].J Non-Crystal Solids, 1998,225: 358-363.
[7]
Tillotson T M, Gash A E, Simpson R L, et al.Nanostructured energetic materials using sol-gel methodologies[J].J Non-Crystal Solids, 2001,285: 338-345.
[8]
Gash A E, Tillotson T M, Satcher J H, et al.Use of epoxides in the sol-gel synthesis of porous iron(Ⅲ) oxide monoliths from Fe(Ⅲ) salts[J].Chem Mater, 2001,13, 999-1007.
[9]
郁卫飞, 黄辉, 张娟, 等.溶胶-凝胶法制备纳米RDX/RF薄膜技术研究[J].含能材料, 2008,16(4): 391-394.YU Wei-fei, HUANG Hui, ZHANG Juan, et al.Nano-RDX/RF film preparation with sol-gel method[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008,16(4): 391-394.
[10]
张娟, 聂福德, 郁卫飞等.干燥方式对RDX/RF复合含能材料结构性能影响[J].含能材料, 2009,17(1): 23-26.ZHANG Juan, NIE Fu-de, YU Wei-fei, et al.Effect of drying methods on structure of RDX/RF composite energetic materials[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009,17(1): 23-26.
[11]
姜夏冰, 梁逸群, 张景林, 等.溶胶-凝胶法制备RDX/SiO2传爆药薄膜技术研究[J].含能材料, 2009,17(6): 689-693.JIANG Xia-bing, LIANG Yi-qun, ZHANG Jing-lin, et al.Preparation of RDX/SiO2 booster membrane by sol-gel method[J].Chinese Journal of Energetic Materials(Hanneng Cailiao), 2009,17(6): 689-693.
[12]
潘军杰, 张景林, 谌宵, 等.RDX/Al/Fe2O3纳米复合材料的制备[J].火炸药学报, 2011,34(2): 33-36.PAN Jun-jie, ZHANG Jing-Lin, CHEN Xiao, et al.Preparation of nano-composite energetic material RDX/Al/Fe2O3[J].Chinese Journal of Explosives and Propellants, 2011,34(2): 33-36.
[13]
Brill T B, Tappan B C.Thermal decomposition of energetic materials 85: cryogels of nanoscale hydrazinium diperchlorate in resorcinol-formaldehyde[J].Propel Explos Pyrotech, 2003,28: 72-76.
[14]
Brill T B, Tappan B C.Thermal decomposition of energetic materials 86: cryogel synthesis of nanocrystalline CL-20 coated with cured nitrocellulose[J].Propel Explos Pyrotech, 2003,28: 223-230.
[15]
Provatas A.Energetic polymers and plasticizers for explosive formulation-a review of recent advances[R].DSTO-TR-0966.Melbourne: DSTO Aeronautical and Maritime Research Laboratory, 2000.
[16]
蔡华强.介孔材料与功能性含能材料的关联和复合[D].复旦大学, 2009.CAI Hua-qiang.Association and composite mesoporous materials with functional energetic materials[D].Fudan University, 2009.
[17]
江明, Eisenberg A, 刘国军, 等.大分子自组装[M].北京: 科学出版社.2006.JIANG Ming, Eisenberg A, LIU Guo-jun, et al.Macromolecular self-assembly[M], Beijing: Science Press.2006.
[18]
Yang W Y, Ahn J H, Yoo Y S, et al.Supramolecular barrels from amphiphilic rigid–flexible macrocycles[J].Nature Materials, 2005,4: 399-402.
[19]
Olsen B D, Segalman R A.Phase transitions in asymmetric rod-coil block copolymers[J].Macromolecules, 2006,39: 7078-7083.
[20]
Kim B, Hong D, Bae J, et al.Controlled self-assembly of carbohydrate conjugate rod-coil amphiphiles for supramolecular multivalent ligands[J].J Am Chem Soc, 2005,127: 16333-16337.
[21]
Rahman M S, Samal S.Synthesis and self-assembly studies of amphiphilic poly(n-hexylisocyanate)-block-poly(2-vinylpyridine)-block-poly(n-hexylisocyanate)rod-coil-rod triblock copolymer[J].Macromolecules, 2006,39: 5009-5014.
[22]
Olsen B D, Segalman R A.Self-assembly of rod–coil block copolymers[J].Mater Sci Eng R, 2008,62: 37-66.
[23]
Konstantatos G, Howard I, Fiseher A, et al.Ultrasensitive solution-cast quantum dot photodetectors[J].Nature, 2006,442(7099): 180-183.
[24]
Gas J, Poddar P, Almand J, et al.Super paramagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions[J].Adv Funct Mater, 2006,16(l): 71-75.
[25]
Kaittanis C, Naser S A, Perez J M.One-step, nanoparticle-mediated bacterial detection with magnetic relaxation[J].Nano Letters, 2007,7(2): 380-383.
[26]
Jaramillo T F, Baeck S H, Cuenya B R, et al.Catalytic activity of supported au nanoparticles deposited from block copolymer micelles[J].J Am Chem Soc, 2003,125(24): 7148-7149.
[27]
Thompson R B, Ginzburg V V, Matsen M W, et al.Predicting the mesophases of copolymer-nanoparticle composites[J].Science, 2001,292(5526): 2469-2472.
[28]
Chiu J J, Kim B J, Kramer E J, et al.Control of nanoparticle location in block copolymers[J].J Am Chem Soc, 2005,127(14): 5036-5037.
[29]
Warren S C, Messina L C, Slaughter L S, et al.Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly[J].Science, 2008,320: 1748-1752.
[30]
Wong M S, Cha J N, Stucky G D, et al.Assembly of nanoparticles into hollow spheres using block copolypeptides[J].Nano Lett, 2002,2: 583-587.
[31]
Park S, Lim J H, Chung S K, et al.Self-assembly of mesoscopic metal-polymer amphiphiles[J].Science, 2004,303 : 348-351.
[32]
Nie Z, Fava D, Kumacheva E, et al.Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers[J].Nature Materials, 2007,6: 609-614.
[33]
Rahman M, Changez M, Min J, et al.Functionalization of amphiphilic coil-rod-coil triblock copolymer poly(2-vinylpyridine)-b-poly(n-hexyl isocyanate)-b-poly(2-vinylpyridine) with florescence moiety and C60[J].Polymer, 2011,52: 1925-1931.
[34]
Iacovella C R, Horsch M A, Zhang Z, et al.Phase diagrams of self-assembled mono-tethered nanospheres from molecular simulation and comparison to surfactants[J].Langmuir, 2005,21: 9488-9494.
[35]
Lin Y, Boker A, He J B, et al.Self-directed self-assembly of nanoparticle/copolymer mixtures[J].Nature, 2005,434(7029): 55-59.
[36]
Wu D, Wu L, Zhang M, et al.Morphology evolution of nanocomposites based on poly(phenylenesulfide)/Poly(butylene terephthalate) blend[J].Journal of Polymer Science, Part B: Polymer Physics, 2008,46: 1265-1279.
[37]
Lim Y, Moon K S, Lee M.Rod-coil block molecules: their aqueous self-assembly and biomaterials applications[J].J Mater Chem, 2008,18: 2909-2918.
[38]
Jenekhe S A, Chen X L.Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes[J].Science, 1998,279: 1903-1907.
[39]
Jenekhe S A, Chen X L.Self-assembly of ordered microporous materials from rod-coil block copolymers[J].Science, 1999,283: 372-375.
[40]
Chen J, Thomas E L, Ober C K, et al.Self-assembled smectic phases in rod-coil block copolymers[J].Science, 1996,273: 343-346.
[41]
Sary N, Brochon C, Hadziioannou G, et al.Self-assembly of rod-coil block copolymers from weakly to moderately segregated regimes[J].Eur Phys J E, 2007,24: 379-384.
[42]
Horsch M A, Zhang Z, Glotzer S C.Self-assembly of end-tethered nanorods in a neat system and role of block fractions and aspect ratio[J].Soft Matter, 2010,6: 945-954.
Chen J, Zhang C, Sun Z, et al.A novel self-consistent-field lattice model for block copolymers[J].J Chem Phys, 2006,124 (10): 4907-4911.
[45]
Xia Y, Chen J, Sun Z, Shi T, et al.Self-assembly of linear ABC coil-coil-rod triblock copolymers[J].Polymer, 2010,51: 3315-3319.
[46]
Alsunaidi A, Otter W K, Clarke J H R.Liquid-crystalline ordering in rod-coil diblock copolymers studied by mesoscale simulations[J].Phil Trans R Soc Lond A, 2004,362: 1773-1781.
[47]
AlSunaidi A, Otter W K, Clarke J H R.Microphase separation and liquid-crystalline ordering of rod-coil copolymers[J].J Chem Phys, 2009,130(12): 4910-4917.
[48]
He L, Zhang L, Liang H.Mono- or bidisperse nanorods mixtures in diblock copolymers[J].Polymer, 2010,51: 3303-3314.