全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
含能材料  2014 

石墨烯基炸药传感器的研究进展

DOI: 10.3969/j.issn.1006-9941.2014.01.023

Keywords: 石墨烯,炸药检测,电化学传感器,表面增强拉曼散射(SERS),荧光共振能量转移(FRET),电化学发光(ECL)

Full-Text   Cite this paper   Add to My Lib

Abstract:

炸药及其痕量检测技术已成为当今国际反恐领域的研究热点之一。常用的传感器如声表面波传感器、离子迁移谱传感器等,在检测指标方面还达不到实际应用的要求。石墨烯基炸药传感器检测限达10-10,有响应快、灵敏度高等优点,已逐渐成为研究的焦点。简要分析了石墨烯在传感器中应用的优越性。重点介绍了近年来石墨烯基炸药传感器(包括电化学、表面增强拉曼散射和荧光共振能量转移及电化学发光传感器)的研究进展。总结了现有石墨烯基炸药传感器的技术特点。认为对石墨烯及氧化石墨烯表面修饰及功能化,开发性能优良的石墨烯杂化材料,提高其检测灵敏度是今后研究的方向。

References

[1]  Zhang H X, Hu J S, Yan C J, et al.Functionalized carbon nanotubes as sensitive materials for electrochemical detection of ultra-trace 2,4,6-trinitrotoluene[J].Phys Chem Chem Phys, 2006,8 (30): 3567-3572.
[2]  Goh M S, Pumera M.Graphene-based electrochemical sensor for detection of 2,4,6-trini -trotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles[J], Anal Bioanal Chem, 2011,399 (1): 127-131.
[3]  Tang L H, Feng H B, Cheng J S, et al.Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing[J].Chem Commun, 2010,46 (32): 5882-5884.
[4]  Chen T W, Sheng Z H, Wang K, et al.Determination of explosives using electrochemically reduced graphene [J].Chem Asian J, 2011,6 (5): 1210-1216.
[5]  Dan Y P, Lu Y, Kybert N J, et al.Intrinsic response of graphene vapor sensors[J].Nano Letter, 2009,9 (4) : 1472-1475.
[6]  Guo C X, Lei Y, Li C M.Porphyrin functionalized graphene for sensitive electrochemcial detection of ultratrace explosives[J].Electroanalysis, 2011,23 (4): 885-893.
[7]  Kannan G K, Nimal A T, Mittal U, et al.Development of handheld SAW vapor sensors for explosives and CW agents[J].Sens Actuators B, 2009,135 (2): 399-410.
[8]  Trinchi A, Wlodarsk I W, Li Y X.Hydrogen sensitive GA2O3 Schottky diode sensor based on SiC[J].Sens Actuators B, 2004,100 (1-2): 94-98.
[9]  Khayamian T, Tabrizchi M, Jafari M T.Analysis of 2,4,6-trinitrotoluene pentaerythritol tetranitrate and cyclo-1,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion mobility spectrometry[J].Talanta, 2003,59: 327-333.
[10]  Hanrahan G, Patil D G, Wang J.Electrochemical sensors for environmental monitoring: design, development and applications[J].J Environ Monit, 2004,6 (8): 657-664.
[11]  Chang C P, Chao C Y, Huang J H, et al.Fluorescent conjugated polymer films as TNT chemosensors[J].Synthetic Metals, 2004,144 (3): 297-301.
[12]  Riskin M, Tel-Vered R, Bourenko T, et al.Imprinting of molecular recognition sites through electropoly-merization of functional ized Au nanoparticles: Development of an electrochemical TNT sensor based on π-donor-acceptor interactions[J].J Am Chem Soc, 2008,130 (30): 9726-9733
[13]  Wilson R, Clavering C, Hutchinson A.Electrochemiluminescence enzyme imm unoassay for TNT[J].Analyst, 2003,128 (5): 480-485.
[14]  Shriver-Lake L C, Brestin K A, Charles P T, et al.Detection of TNT in water using an evanescent wave fiber optic biosensor[J].Anal Chem, 1995,67 (14): 2431-2435.
[15]  Cheianov V V, Falko V, Altshuler B L.The focusing of electron flow and a veselago lens in graphene p-n junctions[J].Science, 2007,315 (5816): 1252-1255.
[16]  Geim A K.Graphene: status and prospects[J].Science, 2009,324 (5934): 1530-1534.
[17]  Choi W, Lee J W.Photocatalytic synthesis of pure and water-dispersible graphene monosheets[J].Chem Eur J, 2012,18 (10): 2762-2767.
[18]  Fowler J D, Allen M J, Tung V C, et al.Practical chemical sensors from chemically derived graphene[J].ACS Nano, 2009,3 (2): 301-306.
[19]  Hill E W, Vijayaragahvan A, Novoselov K.Graphene sensors[J].IEEE Sensors Journal, 2011,11 (12): 3161-3170.
[20]  Fleet B, Gunasingham H.Electrochemical sensors for monitoring environmental pollutants[J].Talanta, 1992,39 (11): 1449-1457.
[21]  Zhang H X, Cao A M, Hu J S, et al.Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode[J].Anal Chem, 2006,78 (6): 1967-1971.
[22]  Wang J, Hocevar S B, Ogorevc B.Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6-trinitrotoluene ,Electrochem[J].Commun.2004,6 (2): 176-179.
[23]  Wang L, Zhang J J, Xiong H, et al.A novel nitromethane biosensor based on biocompatible conductive redox graphene-chitosan/hemoglobin/graphene/room temperature ionic liquid matrix[J].Biosens.Bioelectron, 2010,26 (3): 991-995.
[24]  Chen T W, Xu J Y, Sheng Z H, et al.Enhanced electrocatalytic activity of nitrogen-doped graphene for the reduction of nitro explosives[J].Electroche mistry Communications, 2012,16 (1): 30-33.
[25]  Grigoriants I, Markovsky B, Persky R, et al.Electrochemical reduction of trinitrotoluene on core-shell tin carbon electrodes[J].Electrochim Acta, 2008,54 (2): 690-697.
[26]  Sanoit J, Vanhove E, Mailley P, et al.Electrochemical diamond sensors for TNT detection in water[J].Electrochim Acta, 2009,54 (24): 5688-5693.
[27]  Wang J, Hocevar S B, Ogorevc B.Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6-trinitrotoluene[J].Electrochem Commun, 2004,6 (2): 176-179.
[28]  Hrapovic S, Majid E, Liu Y L, et al.Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds[J].Anal Chem, 2006,78 (15): 5504-5512.
[29]  Guo C X, Lu Z S, Lei Y, et al.Ionic liquid-graphene composite for ultratrace explosive trinitrotoluene detection[J].Ele13,248-249: 322-328.
[30]  Liu Y, Zhu L H, Zhang Y Y, et al.Electrochemical sensoring of 2,4-dinitrophenol by using composites of graphene oxide with surface molecular[J].imprinted polymerSensors and Actuators B, 2012,171-172: 1151-1158.
[31]  Li J H, Kuang D Z, Feng Y L, et al.A graphene oxide-based electrochemical sensor for sensitive deter-mination of 4-nitrophenol[J].Journal of Hazardous Materials, 2012,201-202: 250-259.
[32]  sorbed on a complex-shaped metal particle[J].Chemica1 Physics Letters, 2001,342(1-2): 135-140.
[33]  Nie S M, Emory S R.Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J].Science, 1997,275 (5303): 1102-1106.
[34]  Xu W G, Ling X, Xiao J Q, et al.Surface enhanced raman spectroscopy on a flat graphene surface[J].PNAS, 2012,109 (24): 9281-9286.
[35]  Ling X, Wu J X, Xu W G, et al.Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced raman spectroscopy[J].nano small Molecule, 2012,8 (9): 1365-1372.
[36]  Liu M M, Chen W.Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy[J].Biosensors and Bioelectronics, 2013,46 (15): 68-73.
[37]  Fan L S, Hu Y W, Wang X, et al.Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT[J].Talanta, 2012,101 (15): 192-197.
[38]  Lee J H, Kang S, Jaworski J, et al.Fluorescent composite hydrogels of metal-organic frameworks and functionalized graphene oxide[J].Chem Eur J, 2012,18 (3): 765-769.
[39]  Wang Y, Lu J, Tang L H, et al.Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds[J].Anal Chem, 2009,81 (23): 9710-9715.
[40]  Li H J, Chen J, Han S, et al, Electrochemiluminescence from tris(2,2`-bipyridyl)ruthenium(Ⅱ)-graphene- Nafion modified electrode[J].Talanta, 2009,79 (2): 165-170.
[41]  Chen G F, Zhai S Y, Zhai Y L, et al.Preparation of sulfonic-functionalized graphene oxide as ion-exchange material and its application into electrochemiluminescence analysis[J].Biosens Bioelectron, 2011,26 (7): 3136-3141.
[42]  Yu Y Q, Cao Q, Zhou M, et al.A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer[J].Biosensors and Bioelectronics, 2013,43: 137-142.
[43]  Wang Y Q, Zou W S.3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution[J].Talanta, 2011,85 (1): 469-475.
[44]  Xiao C H, ehman A, Zeng X Q.Dynamics of redox processes in lonic liquids and their interplay for discrimi-native electrochemical sensing[J].Anal Chem, 2012,84 (3): 1416-1424.
[45]  Xia Y S, Song L, Zhu C Q, et al.Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (Gold Nanorod) (Quantum Dots) assembly[J].Analytical Chemistry, 2011,83 (4): 1401-1407.
[46]  Wei W L, Qu X G.Extraordinary physical properties of functionalized graphene[J].Nano Small Micro, 2012,8 (14): 2138-2151.
[47]  Mirasoli M, Buragina A, Dolci L S, et al.Development of a chemiluminescence-based quantitative lateral flow immunoassay for on-filed detection of 2,4,6-trinitrotoluene[J].Analytica Chimica Acta, 2012,172: 167-172.
[48]  Wilson R, Clavering C, Hutchinson A.Electrochemiluminescence Enzyme Immunoassays for TNT and Pentaerythritol Tetranitrate[J].Analytical Chemistry, 2003,75 (16): 4244-4249.
[49]  Pittman T L, Thomson B, Miao W J.Ultrasensitive detection of TNT in soil, water, using enhanced electrogenerated chemiluminescence[J].Analytica Chimica Acta, 2009,632 (2): 197-202.
[50]  Sablok K, Bhalla V, Sharma P, et al.Amine function-alized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene[J].Journal of Hazardous Materials, 20

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133