全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
含能材料  2015 

RDX基钛氢复合炸药空中爆炸性能

DOI: 10.11943/j.issn.1006-9941.2015.11.002

Keywords: 氢化钛 RDX 复合炸药 空中爆炸 产物分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用空中爆炸实验研究了含量和粒径不同的氢化钛对RDX基钛氢复合炸药性能的影响, 分析了固相爆炸产物。结果表明, 氢化钛粒径减小能有效提高冲击波参数, 氢化钛含量为20%时, 氢化钛粒径为0.96 μm的复合炸药的超压峰值、正相时间和正相冲量较标准RDX分别增加了3.8%, 12.7%和14.0%, 而粒径为0.96 μm的氢化钛含量由10%增加到20%时, 冲击波正相冲量增加7.0%, 但超压峰值减小5.1%。方差分析表明氢化钛粒径对复合炸药爆炸性能有显著影响, 且与氢化钛含量有交互作用。固相爆炸产物分析表明, 复合炸药爆炸过程中氢化钛发生了氧化反应, 生成TiO2

References

[1]  李大武,孙挺.泡沫铝发泡剂研究进展[J].材料导报, 2008,22(9): 51-54.LI Da-wu, SUN Ting.Research progress in blowing agent for foamed aluminum[J].Materials Review, 2008,22( 9): 51-54.
[2]  李辰芳.用氢化钛提高固体推进剂燃速的研究[J].飞航导弹, 1997(6): 34-37.LI Chen-fang.Research of raise solid propellant burning rate by using titanium hydride[J].Winged Missiles Journal, 1997(6): 34-37.
[3]  董海山,周芬芬.高能炸药及相关物性能[M].北京: 科学出版社, 1989: 264-267.DONG Hai-shan, ZHOU Fen-fen.Propeties of high explosives and relatives[M].Beijing: Science Press, 1989: 264-267.
[4]  Cooper P W.Explosives engineering[M].New York: Vch Pub, 1996: 51-66.
[5]  孙业斌,惠君明,曹欣茂.军用混合炸药[M].北京: 兵器工业出版社, 1995: 17-23.SUN Ye-bin, HUI Jun-ming, CAO Xin-mao.Military composite explosive[M].Beijing: Weapon Industry Press, 1995: 17-23.
[6]  Babaitsev I V, Kozak N V, Antipova F V.Calculating the detonation parameters of mixtures of hexogen and inert additives[J].Metallurgist, 2007,51(7-8): 401-404.
[7]  Voskoboinikov I M, Kotomin A A.Calculation of detonation parameters for explosive mixture with inert additions[J].Combustion, Explosion and Shock Waves, 1985,21(5): 93-97.
[8]  胥会祥,李兴文,赵凤起, 等.纳米金属粉在火炸药中应用进展[J].含能材料, 2011,19(2): 232-239.XU Hui-xiang, LI Xing-wen, ZHAO Feng-qi, et al.Review on application of nano-metal powders in explosive and propellants[J].Chinese Journal of Energetic Materials (Hanneng Cailiao), 2011,19(2): 232-239.
[9]  陈潜,何得昌,徐更光.超细氧化铁对TNT炸药爆热的影响[J].爆炸与冲击, 2004,23(3): 278-280.CHEN Qian, HE De-chang, XU Geng-guang.The effects of ultra-fine Fe2O3 powder size on the explosion heat of trinitrotoluene[J].Explosion and Shockwaves, 2004,23(3): 278-280.
[10]  苗勤书,徐更光,王廷增.铝粉粒度和形状对含铝炸药性能的影响[J].火炸药学报, 2002,2: 4-8.MIAO Qin-shu, XU Geng-guang, WANG Ting-zeng.Mechamism analysis of the influense of Al shape and size on the detonation properties of aluminized explsives[J].Chinese Journal of Explosives& Propellants, 2002,2: 4-8.
[11]  Gabis I E, Voit A P, Evard E A, et al.Kinetics of hydrogen desorption from the powders of metal hydrides[J].Journal of Alloys and Compounds, 2005,404: 312-316.
[12]  Bhosle V, Baburaj E G, Miranova M, et al.Dehydrogenation of nanocrystalline TiH2 and consequent consolidation to form dense Ti[J].Metallurgical and Materials Transactions A, 2003,34(12): 2793-2799.
[13]  Prashanth K G.Influence of mechanical activation on decomposition of titanium hydride[J].Materials and Manufacturing Processes, 2010,25(9): 974-977.
[14]  王玮,王建灵,郭炜,等.铝含量对RDX基含铝炸药爆压和爆速的影响[J].火炸药学报, 2010,33(1): 15-18.WANG Wei, WANG Jian-ling, GUO Wei, et al.Influence of Al content on the detonation pressure and detonation velocity of RDX-based aluminized explosive[J].Chinese Journal of Explosives & Propellants, 2010,33(1): 15-18.
[15]  张宝钅平,张庆明,黄风雷.爆轰物理学[M].北京: 兵器工业出版社, 2009: 147-149.ZHANG Bao-ping, ZHANG Qing-ming, HUANG Feng-lei.Detonation physics[M].Beijing: Weapon Industry Press, 2009: 147-149.
[16]  Orlenko L P.Explosion physics[M].Moscow: Fizmatlit, 2002: 338-339.
[17]  李凤生,杨毅,罗付生,等.纳米-微米粒子复合技术在火炸药中的应用[J].火炸药学报, 2002,25(4): 56-58.LI Feng-sheng, YANG Yi, LUO Fu-sheng, et al.The application of compounding technique of nano/micro Particles in solid propellant and explosive-I[J].Chinese Journal of Explosives & Propellants, 2002,25(4): 56-58.
[18]  Xue B, Ma H H, Shen Z W, et al.Study on ball milling of TiH2 and application in energetic materials[C]∥4th International Conference on Frontiers of Manufacturing Science and Measuring Technology.Guilin.2014: 107-110.
[19]  Ismail M M, Murray S G.Study of the blast wave parameters from small scale explosions[J].Propellants, Explosives, Pyrotechnics, 1993,18(1): 11-17.
[20]  Wagner C, Muilenberg G.Handbook of X-ray photoelectron spectroscopy[M].Perkin-Elmer, 1979: 68-69.
[21]  Stepura G, Rosenband V, Gany A.A model for the decomposition of titanium hydride and magnesium hydride[J].Journal of Alloys and Compounds, 2012,513: 159-164.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133