Guo C Y, Zhang H B, Wang X C, et al.Study on a novel energetic cocrystal of TNT/TNB[J].Journal of Materials Science, 2013,48(3): 1351-1357.
[2]
Zhang H B, Guo C Y, Wang X C, et al.Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions[J].Crystal Growth & Design, 2013,13(2): 679-687.
[3]
Millar D I A, Maynard-Casely H E, Allan D R, et al.Crystal engineering of energetic materials: Co-crystals of CL-20[J].Cryst Eng Comm, 2012,14(10): 3742-3749.
[4]
Yang Z W, Li H Z, Zhou X Q, et al.Characterization and properties of a novel energetic-energetic cocrystal explosive composed of HNIW and BTF[J].Crystal Growth & Design, 2012,12(11): 5155-5158.
[5]
杨宗伟, 张艳丽, 李洪珍, 等.CL-20/TNT共晶炸药的制备、结构与性能[J]含能材料,2012,20(6): 674-679.YANG Zong-wei, ZHANG Yan-li, LI Hong-zhen, et al.Preparation, structures and properties of CL-20/TNT cocrystal[J].Chinese Journal of Energetic Materials (Hanneng Cailiao), 2012,20(6): 674-679.
[6]
Yang Z W, Li H Z, Huang H, et al.Preparation and performance of a HNIW/TNT cocrystal explosive[J].Propellants, Explosives, Pyrotechnics, 2013,38(4): 495-501.
[7]
Guo C Y, Zhang H B, Wang X C, et al.Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal[J].Journal of Molecular Structure, 2013,1048: 267-273.
[8]
Wang Y P, Yang Z W, Li H Z, et al.A novel cocrystal explosive of HNIW with good comprehensive properties[J].Propellants, Explosives, Pyrotechnics, 2013,35, 1-7.
[9]
Agrawal J P.Some new high energy materials and their formulations for specialized applications[J].Propellants, Explosives, Pyrotechnics, 2005,30(5): 316-328.
[10]
Foltz M F, Coon C L, Garcia F, et al.The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, Part Ⅰ[J].Propellants, Explosives, Pyrotechnics, 1994,19(1): 19-25.
[11]
肖鹤鸣, 许晓娟, 邱玲.高能量密度密度材料的理论设计[M].北京:科学出版社, 2008.XIAO He-ming, XU Xiao-juan, QIU Ling.Theoretical design of high energy density materials[M].Beijing: Science Press, 2008.
[12]
Yan Q L, Zeman S, Elbeih A.Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs)[J].Thermochimica Acta, 2012,537: 1-12.
[13]
肖继军, 朱卫华, 朱伟, 等.高能材料分子动力学[M].北京:科学出版社, 2013.XIAO Ji-jun, ZHU Wei-hua, ZHU Wei, et al.Molecular dynamics of energetic materials[M].Beijing: Science Press, 2013.
Nair U R, Sivabalan R, Gore G M, et al.Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (review)[J].Combustion, Explosion and Shock Waves, 2005,41(2): 121-132.
[16]
Sun H.COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J].The Journal of Physical Chemistry B, 1998,102(38): 7338-7364.
[17]
Bunte S W, Sun H.Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the Compass force field[J].The Journal of Physical Chemistry B, 2000,104(11): 2477-2489.
[18]
Xu X J, Xiao H M, Xiao J J, et al.Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-based PBXs[J].The Journal of Physical Chemistry B, 2006,110(14): 7203-7207.
[19]
Xu X J, Xiao J J, Huang H, et al.Molecular dynamics simulations on the structures and properties of ε-CL-20-based PBXs-primary theoretical studies on HEDM formulation design[J].Sci Chin Ser B, 2007,50(6): 737-745.
[20]
Weiner J H.Statistical mechanics of elasticity[M].NewYork: John Wiley, 1983.
[21]
Pugh S F.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J].Philosophical Magazine, 1954,45(367): 823-843.
[22]
Pettifor D G.Theoretical predictions of structure and related properties of intermetallics[J].Materials Science and Technology, 1992,8(4): 345-349.
[23]
Xiao J J, Wang W R, Chen J, et al.Study on structure, sensitivity and mechanical properties of HMX and HMX-based PBXs with molecular dynamics simulation[J].Computational and Theoretical Chemistry, 2012,999: 21-27.
[24]
马秀芳, 赵峰, 肖继军, 等.HMX 基多组分 PBX 结构和性能的模拟研究[J].爆炸与冲击, 2007,27(2): 109-115.MA Xiu-fang, ZHAO Feng, XIAO Ji-jun, et al.Simulation study on structure and property of HMX-based multi-components PBX[J].Explosion and Shock Waves, 2007,27(2): 109-115.
[25]
Agrawal J P.Recent trends in high-energy materials[J].Progress in Energy and Combustion Science, 1998,24(1): 1-30.
[26]
Sikder A K, Sikder N.A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications[J].Journal of Hazardous Materials, 2004,112(1): 1-15.
Shan N, Zaworotko M J.The role of cocrystals in pharmaceutical science[J].Drug Discovery Today, 2008,13(9): 440-446.
[29]
Landenberger K B, Matzger A J.Cocrystal engineering of a prototype energetic material: Supramolecular chemistry of 2,4, 6-Trinitrotoluene[J].Crystal Growth & Design, 2010,10(12): 5341-5347.
[30]
Shen J P, Duan X H, Luo Q P, et al.Preparation and characterization of a novel cocrystal explosive[J].Crystal Growth & Design, 2011,11(5): 1759-1765.
[31]
Bolton O, Matzger A J.Improved stability and smart-material functionality realized in an energetic cocrystal[J].Angewandte Chemie International Edition, 2011,50(38): 8960-8963.
[32]
Bolton O, Simke L R, Pagoria P F, et al.High power explosive with good sensitivity: A 2: 1 cocrystal of CL-20: HMX[J].Crystal Growth & Design, 2012,12(9): 4311-4314.
[33]
Landenberger K B, Matzger A J.Cocrystals of 1,3, 5,7-Tetranitro-1,3, 5,7-tetrazacyclooctane (HMX)[J].Crystal Growth & Design, 2012,12(7): 3603-3609.