全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
含能材料  2009 

多功能含能结构材料研究进展

DOI: 10.3969/j.issn.1006-9941.2009.06.021

Keywords: 爆炸力学,多功能含能结构材料,含能金属,反应金属,撞击释能,分子动力学,冲击化学

Full-Text   Cite this paper   Add to My Lib

Abstract:

多功能含能结构材料是化学能和动能综合利用的用于提高战斗部毁伤效能的新型功能材料。本研究着重介绍了多功能含能结构材料及其应用的国内外研究现状。对多功能含能结构材料作用特性的实验测试方法、作用机理和理论模型进行了简要的评述;阐述了冲击诱发化学反应(shockinducedchemicalreactions,SICR)方法理论基础和数值仿真方法,并对多功能含能材料的应用现状和前景进行了展望,并给出了近期开展工作的建议。

References

[1]  李金平 孟松鹤 韩杰才 等.爆炸压实中爆轰压力与粉末致密度的关系[J].材料科学与工艺,2005,13(4):341-343.
[2]  Stuivinga M, Verbeek H J, Carton E P. The double explosive layer cylindrical compaction method [J]. Journal of Materials Processing Technology, 1999,85 : 110 - 120.
[3]  LIU Zhi-yue,Katsumi T,Shigeru I. A method for producing extra-high dynamic pressure due to the efficient use of high explosive [J]. Journal of Pressure Vessel Technology,2004,126 : 264 - 268.
[4]  Majumdar S, Kaleb G B, Sharma I G. A study on preparation of Mo-30W alloy by aluminothermic co-reduction of mixed oxides [J]. Journal of Alloys and Compounds,2005,394 : 168 - 175.
[5]  WANG Shuang-xi, LIANG Kai-ming, ZHANG Xian-hui, et al. Influence of heating-rate on DTA curve of the aluminothermic reaction [J]. Journal of Materials Science Letters ,2003,22 : 855 - 856.
[6]  Swati M U, Shoenitz M, Edward L Dreizin. Exothermie reactions in Al-CuO nanocomposites[J]. Thermochimica Acta,2006 ,451: 34 -43.
[7]  M N Raftenberg, W Mock Jr, G C Kirby. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture [J]. International Journal of Impact Engineering, 2008,35: 1735 -1744.
[8]  Grudza M E, Jann D, Forsyth C, ctal. Explosive launch studies for reactive material fragments[C]//4th joint Classified Bombs/Warheads and Ballistics Symposium. Newport,2001 : 110 - 118.
[9]  Myriski B. Shear-driven reactive material combustion at high-speed impact [C] // 2005 Joint Classified Warheads and Ballistics Symposium, Colorado, America, 2005.
[10]  W Mock,Jr Holt W H. Impact initiation of rods of pressed polytetranuoroe thylene (PTFE) and aluminum powders[C]//14th APS Topical Conference on Shock Compression of Condensed Matter, Baltimore, MD,2005.
[11]  Ames R G,Brennan B P. Measurements of the effects of target skin thickness on the impact-initiated energy release from PTFE-Al projectiles [C] // 9th Warheads and Ballistics Classified Symposium, Monterey, Calif. America, June 2003.
[12]  Ames R G, Garrett R K. Measurements of the effects of impactinitiated energy release from moderate-density reactive materials[C]// 9th Warheads and Ballistics Classified Symposium, Monterey, Calif. America, June 2003.
[13]  Ames R G,Garrett R K,Brown L. Detonation-like energy release from high-speed impacts of polytetrafluoroe thylene-aluminum projectiles [C] // 5th Joint Classified Bombs/Warheads and Ballistics Symposium, Newport, R. 1. , June 2002.
[14]  Tomar V,Zhou M. Molecular dynamics simulations of shock-induced thermite reaction[J]. Materials Science Forum Vols, 2004,465-466 : 157 - 162.
[15]  Tomar V. Atomistic modeling of the Al and Fe2O3 material system using classical molecular dynamics[D]. Georgia: Georgia Institute of Technology, 2005.
[16]  fan P H D, Benson D J. Micromechanical modeling of shock-induced chemical reactions in heterogeneous multi-material power mixtures [J]. International Journal of Plasticity,2001 : 641 - 668.
[17]  Tomar V,Zhou M. Molecular dynamics modeling of shock wave propagation in FCC-Al, α-Fe2O3, and their interfaces [J]. Shock Compression of Condensed Matter, 2005 : 421 - 424.
[18]  Tomar V,Zhou M. Strength analyses of Fe2O3 + Al nanocomposites using classical molecular dynamics [C] // Proceeding of ASME IMECE2005, Orlando, Florida USA ,2005.
[19]  Tomar V,Zhou M. Characterization of defect nucleation and propagation in Fe2O3 + FCC Al nanocomposites during uniaxial tensile and compressive deformations[C] //Proceedings of IMECE 2006, Chicago, Illinois. USA. 2006.
[20]  Tomar V, Zhou M. Classical molecular-dynamics potential for the mechanical strength of nanoerystalline compositefcc Al + Fe2O3[J]. Physical Review B,2006,73 : 174 - 204.
[21]  Laszlo J K, William PW. Investigation of a bulk metallic glass as a shaped charge liner material [C] //23^rd International Symposium on Ballistics Tarragona, Tarragona,Spain 2007 : 31 - 38.
[22]  Walters W P, Peregino P, Summers R, et al. A study of jets from unsintered-powder metal lined nonprecision small-caliber shaped charges[R]. ARL-TR-2391,2001.
[23]  Baker E L, Daniels A S, Ng K W. Barnie: A unitary demolition warhead[C] //19th International Symposium of Ballistics. Interlaken, Switzerland 2001 : 569 -574.
[24]  Daniels A S, Baker E L, DeFisher S E. BAM: Large scale unitary demolition warheads[C]//23rd International Symposium on Ballistics Tarragona, Tarragona, Spain ,2007 : 239 - 246.
[25]  Hugh E. Reactive fragment : United States : 3961576 [P] , 1976.
[26]  Daniel J Vavrick. Reinforced reactive material: US 20050067072A1 [P]. 2005.
[27]  Reuben D R. Highly reactive transition metal power[J]. J Am Chem Soc,1977,99 : 4159 -4165.
[28]  黄辉 王泽山 黄亨建.新型含能材料的研究进展[J].火炸药学报,2005,28(4):11-12.
[29]  徐锦仁 何宝国.含能反应式破片材料用于舰船反(高)超音速导弹的设想[J].水雷战与舰船防护,2006,(4):69-72.
[30]  HE Yuan,PAN Xu-chao,HE Yong. Explosible fragment shock initiation investigation [C]//Proceedings of ICMEM2007 International Conference on Mechanical Engineering and mechanics, Wuxi, China, 2007 : 1094 - 1098.
[31]  张先锋 赵晓宁 乔良.反应金属冲击反应过程研究[J].爆炸与冲击,2009:.
[32]  李旭峰.[D].南京:南京理工大学,2005,6.
[33]  李杰.[D].南京:南京理工大学,2006,6.
[34]  Committee on Advanced Energetic Materials and Manufacturing Technologies. Advanced Energetics Materials[R]. 2004 : 20 - 23.
[35]  Baker E L. An application of variable metric nonlinear optimization to the parameterization of an extended thermodynamic equation of state [C] //Proceedings of the Tenth International Detonation Symposium, Boston,America,1993 : 193 - 199.
[36]  易建坤 贺五一 吴腾芳 等.高热剂在弹药销毁领域应用初探[J].工程爆破,2004,10(4):21-25.
[37]  Nikolay U,Radoslav I. Aluminothermic powder bofiding of steel[J]. Applied Surface Science ,2004,225 : 72 - 77.
[38]  Wieezorek K C,Gamrat K,Sawlowicz Z. Characteristics of CuAl2-Cu9Al4/ Al2O3 nanocom- posites synthesized by mechanical treatment[J]. Journal of Thermal Analysis and Calorimetry,2005,80 : 619 - 623.
[39]  XIAO Li-zhe,Dioka C h,Hendry A. Aluminothermic reduction of zireonia [J]. Journal of the European Ceramic Society,2005,25 : 695 -702.
[40]  Ge C L,Ye R C. Research on self-propagating eutectic boriding[J]. Journal of Materials Processing Technology,2002,124 : 14 - 18.
[41]  Ross H P, Elizabeth A R. New combustion synthesis route to TiB2- Al2O3 [J]. Materials Research Bulletin,2001,36: 1487 -1493.
[42]  LIU Mu, SHENG Yin, WEI Yan-ping, et al. The characteristics of combustion in a centrifugal-thermite process[J]. Journal of Materials Science, 1997,32 : 4711 - 4713.
[43]  王毅 姜炜 程志鹏 等.纳米Cu/Al-WO3亚稳态复合材料热反应机理分析[J].物理化学学报,2007,23(11):1753-1759.
[44]  黄培云.粉末冶金原理[M] 第二版[M].北京:冶金工业出向社,1997.
[45]  吴成义 张丽英.分体成形力学原理[M].北京:冶金工业出版社,2003.151-155.
[46]  LiXiaojie(李晓杰) WangJinxiang(t金相) YanHonghao(闰鸿浩).[J].稀有金属材料与工程,2004,33(6):566.
[47]  Joyce J A. Fracture toughness evaluation of polytetrafluoroethylene[C] //14th US National Congress on Theoretical and Applied Mechanics, Blackshurg,Virginia,USA. June 23 -28,2002.
[48]  Lee R J, Mock W. Reactive material studies[C]//Shock compression of condensed matter. Baltimore,Maryland. 2005 : 169 - 174.
[49]  Ferranti L, Thadhani N N. Dynamic impact characterization of Al +Fe2O3 +30% epoxy composites using time synchronized highspeed camera and VISAR measurements [C] // 2006 Materials Research Society. Triangle Park,North Carolina,2006:588 -610.
[50]  Turgutlu A, Hassani A, Akyurt M. Impact deformation of polymeric projectiles[J]. Int J Impact Engng,1996.18(2) : 119 -127.
[51]  Ames R G. Energy release characteristics of impact-initiated energetic materials[C]//2006 Materials Research Society, Triangle Park, North Carolina, 2006.
[52]  Ames R G, Garrett R K. Detonation-like energy release from highspeed impacts of polytetrafluoroethylene-aluminum projectiles [C] // 5th joint Classified Bombs/Warheads and Ballistics Symposium,Newport, R. 1. ,2002.
[53]  Ames R G. Vented chamber calorimetry for impact-initiated energetic materials[R]. 43rd AIAA Aerospace Sciences Meeting and Exhibit. AIAA2005 - 279 : 2005.
[54]  Ames R G, Waggener S S. Reaction efficiencies for impact-initiated energetic materials [C] // 32nd International Pyrotechnics Seminar,Karlsruhe, Germany.June 2005.
[55]  Ames R G, Lacy E W. Comparison of reactive material formulations, part one: Results from testing activities[C] //9th Warheads and Ballistics Classified Symposium,Monterey,Calif. America,June 2003.
[56]  Waggener S S. Measurements of energy release of impacting reactive spheres [C] // Warheads and Ballistics Classified Symposium, Monterey, Calif. August 2004.
[57]  Waggener S S. Energy release of impacting reactive spheres [R]. Dahlgren Division Technical Report TR-04/9: 2004.
[58]  Brown L. Third reactive fragment target chamber test series [R]. Applied Research Associates Project Number 4592 and 4593,October 1998.
[59]  Mock W,Holt J W H. Impact initiation of rods of pressed potytetrafluoroethylene (PTFE) and aluminum powders[C]//14th APS Topical Conference on Shock Compression of Condensed Matter. Baltimore, M D, 2005.
[60]  Naresh T,Tyrus R. Shock-induced and shock-assisted reaction synthesis of materials[R]. ARO 31123.7-ms( 19971215 090) :1995.
[61]  Meyers M A. A fundamental study of shock-induced chemical reactions [R]. ARO32136.2-ms. (19951023 011): 1995.
[62]  David J B,Ian D, Meyers M A. Computational modeling of shock compression of power[J]. Shock Compression of Condensed Matter,2001, 25:1087 - 1092.
[63]  Ian P H, David J B. Micronaechanical modeling of shock-induced chemical reactions in hetero- geneous multi-material powder mixtures [J]. International Journal of Plosticity, 2001,17 : 641 - 668.
[64]  Yang Y,Gould R D,Horie Y. Shock-induced chemical reactions in a Ni/ Al powder mixture[J]. Appl Phys Lett,1997,70(25) : 3365 -3367.
[65]  Tomas V,Zhou M. Molecular dynamics simulation of shock induced detonation[J]. Shock Compression of Condensed Matter,2003 : 413 - 416.
[66]  Tomas V,Zhou M. An empirical molecular dynamics potential for an Al + Fe2O3 reactive metal power mixture [C]//45th AIAA/ASME/ ASCE/AHS/ASC Structureal dynamics & Materials conference. Toulouse, France, 2004.
[67]  Tomar V,Zhou M. Molecular dynamics simulations of shock-induced thermite reaction [J]. Explosion, Shock Wave and Hypervelocity Phenomena in Materials,2006 : 157 - 162.
[68]  Tomar V,Zhou M. A molecular dynamics simulation framework for an Al+ Fe2O3 reactive metal powder mixture [J]. Mat Res Soc Symp Proc,2007,821 : 3.27. 1 - 3.27.7.
[69]  Raafat H G. Reactively induced fragmentating explosives: US 6846372B1 [P]. 2005.
[70]  Reuben D R. Preparation and study of h ghly reactive metal powders [R]. ADA150026,1985.
[71]  李晓杰 王占磊 李瑞勇.爆炸粉末烧结法制取WC/Cu复合材料的研究[J].材料开发与应用,2006,21(3):16-17,33.
[72]  David J B,Ian D,Meyers M A. Computational modeling of shock compression of power[J]. Shock compression of condensed matter, 2001, 23 : 1087 - 1092.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133