全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
含能材料  2011 

高聚物粘结炸药老化模型比较分析

DOI: 10.3969/j.issn.1006-9941.2011.06.018

Keywords: 物理化学,高聚物粘结炸药,贮存寿命,老化模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

概述并分析了Arrhenius、时间温度叠加原理和神经网络三种高聚物粘结炸药(PBX)老化模型的建立方法,利用上述方法对HMX基PBX在45~75℃下老化后的质量变化数据建模并预测寿命。上述三种方法预测该炸药在20℃下质量损失0.1%的贮存寿命分别为390a、490a和15.2a。三种方法预测该炸药在50℃和60℃下质量损失0.2%所需的时间分别为1127d,182d;1180d,196d;1375d,220d;表明Arrhenius和时温叠加原理建模预测结果彼此吻合较好,而神经网络模型对低于建模温度时寿命预测可信度较低。

References

[1]  舒远杰. 高能硝胺炸药的热分解[M]. 北京: 国防工业出版社,2010.
[2]  吕延龙,曹营军,田春雷. 用神经网络技术预测库存发射药安全寿命的可行性[J]. 火炸药学报,2003,26(1): 68-73. Lü Yan-long,CAO Ying-jun,TIAN Chun-lei. Prediction of safe life of propellant by artificial neural networks[J]. Chinese Journal of Explosives & Propellants,2003,26(1): 68-73.
[3]  Ding Samuel. Polymer durability estimates based on apparent activation energies for thermal oxidative degradation[J]. Thermochimica Acta,2001,367-368: 107-112.
[4]  Thompson Darla,Racci Deluca. Temperature superposition applied to PBX mechanical properties[C]∥17th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter,Chicago,Illinois. 2011,6.
[5]  Pan Xuhua. Principle and application of artificial neural network[C]∥International Symposium on Test Automation and Instrumentation, Beijing China,2006: 1280-1283.
[6]  莫文宾,李进贤. 基于遗传神经网络的NEPE推进剂寿命预估[J]. 火炸药学报,2009,32(5): 58-61. MO Wen-bin,LI Jin-xian. Life prediction of NEPE propellant base on GA-BP neural network[J]. Chinese Journal of Explosives & Propellants,2009,32(5): 58-61.
[7]  高大元,何碧,何松伟,等. Arrhenius 方法的局限性讨论[J]. 含能材料,2006,14(2): 132-135. GAO Da-yuan,HE Bi,HE Song-wei,et al. Discussion on limitations of the Arrhenius methodology[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2006,14(2): 132-135.
[8]  José Luis de la Fuente. Dynamic mechanical study on the thermal aging of a hydroxyl-terminated polybutadiene-based energetic composite[J]. Journal of Applied Polymer Science,2003,87: 2397-2405.
[9]  Carvalho L M,Guéga P,Cheradame H,et al. Variation of the mesh size of PEO-based networks filled with TFSILi: from an Arrhenius to WLF type conductivity behavior[J]. European Polymer Journal,2000,36: 401-409.
[10]  Kenneth T Gillen,Jonathan Wise,Roger L Clough. A test of the Arrhenius extrapolation assumption for a nitrile rubber[R]. SAND 94-2035. 1994.
[11]  杨国满,胡晓棉. 时间温度效应与塑料粘结炸药的力学性能[J]. 火炸药学报,2004,27(1): 5-8. YANG Guo-man,HU Xiao-mian. The time-temperature shift factors and the mechannical properties of explosives[J]. Chinese Journal of Explosives & Propellants,2004,27(1): 5-8.
[12]  周光泉,刘孝敏. 粘弹性理论[M]. 合肥: 中国科技大学出版社,1996.
[13]  Hoffman D M. Dynamic mechanical signatures of a polyester-urethane and plastic-bonded explosives based on this polymer[J]. Journal of Applied Polymer Science,2002,83: 1009-1024.
[14]  Williamson D M,Siviour C R. Temperature-time response of a polymer bonded explosive in compression(EDC37)[J]. Journal of Physics D: Applied Physics,2008,41,085404.
[15]  傅荟璇,赵红. MATLAB神经网络应用设计[M]. 北京: 机械工业出版社,2010.
[16]  HOU Zhe-zhe,DU Yan-liang. Application of aritificial neural network based on GA-BP algorithm to predicting mechanical properties of TC4[J]. Advanced Materials Research,2011,146-147: 1698-1701.
[17]  Mohammad Hossein Keshavarz,Mohammad Jaafari. Investigation of the various structure parameters for predicting impact sensitivity of energetic molecules via artificial neural network[J]. Propellants,Explosives,Pyrotechnics,2006,3(31): 216-224. 

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133