全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Failure Assessment Methodologies for Pressure-Retaining Components under Severe Accident Loading

DOI: 10.1155/2012/487371

Full-Text   Cite this paper   Add to My Lib

Abstract:

During postulated high-pressure core melt accident scenarios, temperature values of more than 800°C can be reached in the reactor coolant line and the surge line of a pressurised water reactor (PWR), before the bottom of the reactor pressure vessel experiences a significant temperature increase due to core melting. For the assessment of components of the primary cooling circuit, two methods are used by GRS. One is the simplified method ASTOR (approximated structural time of rupture). This method employs the hypothesis of linear damage accumulation for modeling damage progression. A failure time surface which is generated by structural finite element (FE) analysis of varying pressure and temperature loads serves as a basis for estimations of failure times. The second method is to perform thermohydraulic and structure mechanic calculations for the accident scenario under consideration using complex calculation models. The paper shortly describes both assessment procedures. Validation of the ASTOR method concerning a large-scale test on a pipe section with geometric properties similar to a reactor coolant line is presented as well as severe accident scenarios investigated with both methods. 1. Introduction In face of severe accident scenarios with melted core material which occurred recently at Fukushima Daiichi and in 1979 at Three Mile Island-2 the integrity assessment of primary circuit components requires a special concern. A best estimate simulation of components under severe accident loading scenarios may be complex and time consuming (see second part of the paper). For the accomplishment of a simplified analysis concerning integrity of the components during a severe accident and especially the question which component fails first in framework of thermohydraulic analysis with system codes, an efficient method has been developed which will be described in the following chapters. 2. Method ASTOR The method ASTOR is an easy applicable tool for fast estimation of failure times. Furthermore the reduced complexity enables the integration into thermohydraulic codes and may help to find results of structure mechanical properties which are required for coupled calculation of mechanical and thermohydraulic structure characteristics of primary circuit devices. Moreover the method ASTOR helps to determine the degree of structural damage after a history of load at the actual point of time. Therefore it is possible to determine the remaining durability of components under the assumption that the actual loads will continue at a constant level. The method ASTOR can

References

[1]  P. Eisert, P. Gruner, and W. Kuntze, “Estimation of PWR lower head failure times using the method ASTOR”.
[2]  ADINA (Automatic Dynamic Incremental Nonlinear Analysis), “Version 8.7, Theory and Modeling Guide,” ADINA R&D, 2010.
[3]  “Determination and modeling of material behavior of reactor steels under multiaxial loading in the temperature range from 400°C up to 1000°C,” Reactor Safety Research Project 1501 010, MPA-Stuttgart, 1999.
[4]  “Description of the short-time rupture behavior at temperatures up to 1200°C exceeding usual design on the basis of damage mechanism,” Reactor Safety Research Project 1501 257, MPA-Stuttgart, 2005.
[5]  P. Eisert, P. Bachmann, and J. Sievers, “Further development of the structure mechanic analysis methods for the determination of the creep behaviour of components,” Final Report on Research project RS 1115, GRS-A- 3104, 2003.
[6]  F. Ju and T. Buttler, “Review of proposed failure criteria for ductile materials,” NUREG/CR 3644, 1984.
[7]  K. Maile, A. Klenk, V. Obst, and D. Sturm, “Load carrying behaviour of the primary system of PWRs for loads beyond the design limits. Part 2: creep and failure behaviour of a piping section under internal pressure and high temperature,” Nuclear Engineering and Design, vol. 119, no. 2-3, pp. 131–137, 1990.
[8]  J. Arndt and J. Sievers, “Failure assessment methodology for piping under high temperature and pressure due to creep and plastification,” in Proceedings of the 21st International Conference on Structure Mechanics in Reactor Technology (SMiRT '21), New Delhi, India, November 2011.
[9]  K. B. Cady, V. K. Dhir, and R. J. Witt, “Peer review of models for lower vessel head heat transfer and larson-miller failure criterion proposed for implementation into MELCOR,” ERI/NRC 94-202, 1994, MELCOR 1.86 Reference Manual (NUREG/CR-6119, Vol. 2, Rev. 3).
[10]  H. Grebner and J. Sievers, “Limit load of a PWR coolant loop for a hypothetical core melt scenario with high temperature and high pressure,” 27. MPA-Seminar, Stuttgart, Germany, October 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133