|
Failure Assessment Methodologies for Pressure-Retaining Components under Severe Accident LoadingDOI: 10.1155/2012/487371 Abstract: During postulated high-pressure core melt accident scenarios, temperature values of more than 800°C can be reached in the reactor coolant line and the surge line of a pressurised water reactor (PWR), before the bottom of the reactor pressure vessel experiences a significant temperature increase due to core melting. For the assessment of components of the primary cooling circuit, two methods are used by GRS. One is the simplified method ASTOR (approximated structural time of rupture). This method employs the hypothesis of linear damage accumulation for modeling damage progression. A failure time surface which is generated by structural finite element (FE) analysis of varying pressure and temperature loads serves as a basis for estimations of failure times. The second method is to perform thermohydraulic and structure mechanic calculations for the accident scenario under consideration using complex calculation models. The paper shortly describes both assessment procedures. Validation of the ASTOR method concerning a large-scale test on a pipe section with geometric properties similar to a reactor coolant line is presented as well as severe accident scenarios investigated with both methods. 1. Introduction In face of severe accident scenarios with melted core material which occurred recently at Fukushima Daiichi and in 1979 at Three Mile Island-2 the integrity assessment of primary circuit components requires a special concern. A best estimate simulation of components under severe accident loading scenarios may be complex and time consuming (see second part of the paper). For the accomplishment of a simplified analysis concerning integrity of the components during a severe accident and especially the question which component fails first in framework of thermohydraulic analysis with system codes, an efficient method has been developed which will be described in the following chapters. 2. Method ASTOR The method ASTOR is an easy applicable tool for fast estimation of failure times. Furthermore the reduced complexity enables the integration into thermohydraulic codes and may help to find results of structure mechanical properties which are required for coupled calculation of mechanical and thermohydraulic structure characteristics of primary circuit devices. Moreover the method ASTOR helps to determine the degree of structural damage after a history of load at the actual point of time. Therefore it is possible to determine the remaining durability of components under the assumption that the actual loads will continue at a constant level. The method ASTOR can
|