全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于平均场均衡的Ad hoc网络路由协议

DOI: 10.3969/j.issn.1006??7043.201212083

Keywords: 平均场均衡, 无线自组织网络, 博弈论, 收敛性分析, AODV, 路由协议??

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了简化使用完美马尔科夫均衡方法可能引起的复杂计算过程,本文依据博弈论方法,提出一种平均场均衡的无线自组织网络路由协议(mean field equilibrium AODV, MFEA)。该方法要求每个节点利用所有其他节点的信息来分析自己的最优策略,而不需要知道每一个局中人的信息,并且在足够大的局中人数目情况下性能更加近似马尔科夫均衡。仿真实验显示:提出的MFEA路由协议在包投递率、时延和归一化开销方面均优于AODV(Ad hoc on??demand distance vector routing)协议,在节点密集的无线自组织网络中仍可获得比较好效果。

References

[1]  EIDENBENZ S, KUMAR V S, ZUST S. Equilibria in topology control games for ad hoc networks[J]. Mobile Networks and Applications, 2006, 11(2): 143?159.? [2]HUANG M, MALHAM′E P R, CAINES P E. Nash certainty equivalence in large population stochastic dynamic games: connections with the physics of interacting particle systems[C]// Proceedings 45th IEEE Conference on Decision and Control. San Diego, USA, 2006: 4921?4926.c? [3]HUANG M, CAINES P E, MALHAM′E R P. Large population costcoupled LQG problems with nonuniform agents: individual?mass behavior and decentralized ε?Nash equilibria[J]. IEEE Trans Autom Control, 2007, 52(9): 1560?1571.? [4]LU Bin, POOCH U W. A game theoretic framework for bandwidth reservation in mobile ad hoc networks[C]//Proceedings of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’04). Dallas, USA, 2004: 234?241.? [5]王炳昌, 张纪峰. 马氏跳变大种群随机多自主体系统的平均场博弈[C]//Proceedings of the 29th Chinese Control Conference. Beijing, China, 2010.?WANG Bingchang, ZHANG Jifeng. Mean field games for large population stochastic multi agent systems with Markov jumps[C]//Proceedings of the 29th Chinese Control Conference. Beijing, China, 2010.? [6]郭毅, 王振兴, 程东年. 基于博弈的域间路由协同监测激励策略[J]. 中国科学:信息科学, 2012, 42(7): 803?814.?GUO Yi, WANG Zhenxing, CHENG Dongnian. A game?theory?based incentive strategy for inter?domain routing cooperative monitoring[J]. Scientia Sinica Informationis, 2012, 42(7): 803?814.? [7]杨宁, 田辉, 黄平, 等. 基于博弈理论的无线传感器网络分布式节能路由算法[J]. 电子与信息学报, 2008, 30(5): 1230?1233.?YANG Ning, TIAN Hui, HUANG Ping, et al. Distributed energy?economical routing algorithm based on game?theory for WSN[J]. Journal of Electronics & Information Technology, 2008, 30(5): 1230?1233.? [8]胡静, 沈连丰. 基于博弈论的无线传感器网络分簇路由协议[J]. 东南大学学报, 2010, 40(3): 441?446.?HU Jing, SHEN Lianfeng. Clustering routing protocol of wireless sensor networks based on game theory[J]. Journal of Southeast University, 2010, 40(3): 441?446.? [9]汪洋, 林闯, 李泉林, 等. 基于非合作博弈的无线网络路由机制研究[J]. 计算机学报, 2009, 32(1): 54?68.?WANG Yang, LIN Chuang, LI Quanlin, et al. Non?cooperative game based research on routing schemes for wireless networks [J]. Chinese Journal of Computers, 2009, 32(1): 54?68.? [10]AUMANN R J. Handbook of game theory with economic applications [M]. Amsterdam: Elsevier, 1994.? [11]OSBORNE M J, RUBINSTEIN A. A course in game theory[M]. Cambridge: MIT press, 1994.? [12]GIBBONS R. Game theory for applied economists[M]. Princeton: Princeton University Press, 1992.? [13]ADLAKHA S, JOHARI R. Mean field equilibrium in dynamic games with complementarities[C]// 2010 49th IEEE Conference on Decision and Control (CDC). Atlanta, USA, 2010: 6633?6638.? [14]WEINTRAUB G Y, BENKARD C L, Van ROY B. Oblivious equilibrium: a mean field approximation for large?scale dynamic games [C]// Neural Information Processing Systems. Vancouver,Canada, 2005.? [15]IYER K, JOHARI R, SUNDARARAJAN M. Mean field equilibria of dynamic auctions with learning[J]. ACM SIGecom Exchanges, 2011, 10(3): 10?14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133