基于广义主成分分析的步态识别算法研究
DOI: 10.3969/j.issn.1006-7043.2009.09.010
Abstract:
步态识别是根据人行走方式的不同对人的身份进行识别的.通过背景减除实现人体检测,运用形态学操作和图形几何变换实现了图像的标准中心化.在特征提取阶段使用步态能量图(GEI)来描述每个步态序列,分别使用主成分分析、二维主成分分析、完全的二维主成分分析以及加权完全的二维主成分分析对特征进行降维,最后采用最近邻分类器来测试识别结果作对比研究.实验结果表明权衡计算量和识别率,二维主成分分析对于GEI的步态识别比较有效,识别率可达95.43%.
References
[1] | 1. 王科俊.侯本博 步态识别综述 2007(7)
|
[2] | 2. NIKOLAOS V.BOULGOURIS X C Human gait recognition based on matching of body components 2007(6)
|
[3] | 3. 柴艳妹.赵荣椿.田光见 基于动态能量特征的步态识别方法 2007(1)
|
[4] | 4. 刘玉栋.苏开娜.马丽 一种基于模型的步态识别方法 2005(9)
|
[5] | 5. ZHAO Guoying.LIU Guoyi.LI Hua 3D gait recognition using multiple cameras 2006
|
[6] | 6. JU Han.BHANU B Individual recognition using gait energy image 2006(2)
|
[7] | 7. JU Han.BHANU B Statistical feature fusion for gait-based human recognition 2004
|
[8] | 8. XU D.YAN S.TAO D Human gait recognition with matrix representation 2006(7)
|
[9] | 9. YANG Jian.ZHANG D.ALEJANDRO F Two-dimensional PCA:a new approach to appearance-based face representation and recognition 2004(1)
|
[10] | 10. ZHANG Daoqiang.ZHOU Zhihua Two-directional two-dimensional PCA for efficient face representation and recognition 2005
|
[11] | 11. XU Anbang.JIN Xin.JIANG Yugang.GUO Ping Complete two-dimensional PCA for face recognition 2006
|
[12] | 12. DUDA R O.HART P E.STORK D G.李宏东.姚天翔 模式分类 2003
|
[13] | 13. WOLF L.BILESCHI S Combining variable selection with dimensionality reduction 2005
|
Full-Text