CVETKOVIC M, DOOB M, SACHS H. Spectra of graphs: theory and applications[M]. 3rd ed. Heidelberg-Leipzig: Johan Ambrosius Bart Verlag, 1995: 23-47.?
[2]
VAN DAM E R, HAEMERS W H. Which graphs are determined by their spectrum?[J]. Linear Algebra Appl, 2003, 373: 241-272.?
[3]
HAEMERS W H, LIU X G, ZHANG Y P. Spectral characterizations of lollipop graphs[J]. Linear Algebra Appl, 2008, 428: 2415-2423.?
[4]
LI J S, PAN Y L. A note on the second largest eigenvalue of the Laplacian matrix of a graph[J]. Linear and Multilinear Algebra, 2000, 48(20): 117-121.?
[5]
LIU X G, WANG S J, ZHANG Y P, et al. On the spectral characterization of some unicyclic graphs[J]. Discrete Mathematics, 2011, 311(21): 2317-2336.?
[6]
BRUALDI R A, CVETKOVIC D. A combinatorial approach to matrix theory and its applications[M]. Boca Raton: Chapman & Hall/CRC Press, 2009: 180.?
[7]
?KELMANS A K, CHELNOKOV V M. A certain polynomial of a graph and graphs with an extremal number of trees[J]. Journal of Combinatorial Theory, Series B, 1974, 16: 197-214.?
[8]
LI J S, ZHANG X D. On the Laplacian eigenvalues of a graph[J]. Linear Algebra Appl, 1998, 285: 305-307.?
[9]
BIGGS N L. Algebraic graph theory[M]. 2nd ed. Cambridge: Cambridge University Press, 1993: 47-48.?
[10]
GUO J M. A conjecture on the algebraic connectivity of connected graphs with fixed girth[J]. Discrete Math, 2008, 308: 5702-5711.?
[11]
GUO J M. On the second largest Laplacian eigenvalue of trees[J]. Linear Algebra Appl, 2005, 404: 251-261.?