全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磁弹性理论中的守恒定律和路径无关积分

DOI: 10.3969/j.issn.1006-7043.201309088

Keywords: 磁弹性, 能量矩, 守恒定律, 路径无关积分

Full-Text   Cite this paper   Add to My Lib

Abstract:

守恒定律与路径无关积分是传统力学中的重要工具,在位错、断裂力学和其他缺陷理论中具有重要的应用价值。由于力场和磁场的共同作用,以及磁弹性材料本身的耦合性质,所以磁弹性体具有更为广泛的守恒定律和路径无关积分。文中通过定义4种不同的热力学函数,应用电磁场理论中的能量矩概念,建立了磁弹性理论中对偶形式的守恒定律,并由这些对偶形式的守恒定律得到了相应的路径无关积分。文中建立的守恒定律和路径无关积分,对研究磁弹性体中的缺陷理论将起到十分重要的作用。

References

[1]  RICE J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics, 1968, 35(2): 379-386.
[2]  KNOWLES J K, STERNBERG E. On a class of conservation laws in linearized and finite elastostatics[J]. Archives for Rational Mechanics Analysis, 1972, 44(3): 187-211.
[3]  BUDIANSKY B, RICE J R. Conservation laws and energy-release rates[J]. Journal of Applied Mechanics, 1973, 40 (1): 201-203.
[4]  CHEN Yiheng. Advances in conservation laws and energy release rates[M]. Dordrecht: Kluwer Academic Publishers, 2002: 261-296.
[5]  SONG Haiyan, FAN Tao. Energy principle in crack propagation[J]. Key Engineering Materials, 2012, 488-489: 593-596.
[6]  宋海燕,梁立孚,周轶雷.一般力学广义变分原理的对偶形式[J].哈尔滨工程大学学报,2004, 25(6): 740-743,760.SONG Haiyan, LIANG Lifu, ZHOU Yilei. Dual form of generalized variational principles in general mechanics [J]. Journal of Harbin Engineering University, 2004, 25 (6): 740-743,760.
[7]  BUI H D. Dual path independent integrals in the boundary-value problems of cracks[J]. Engineering Fracture Mechanics, 1974, 6(2): 287-296.
[8]  LI Xu. Dual conservation laws in elastostatics [J]. Engineering Fracture Mechanics, 1988, 29(2): 233-241.
[9]  LIU Zongmin, MAO Jize, SONG Haiyan. J-integral and its dual form based on finite deformation theory[J]. Key Engineering Materials, 2013, 525-526: 313-316.
[10]  SONG Haiyan, LIU Zongmin, HUANG Yonghu. Dual form of generalized variational principles for piezoelectricity[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2013, 14(3/4): 205-209.
[11]  ESHELBY J D. The ealstic energy-momentum tensor[J]. Journal of Elasticity, 1975, 5(3/4): 321-335.
[12]  王晓明,沈亚鹏.关于压电介质的守恒方程和路径无关积分[J].力学学报,1995, 27(1): 86-92.WANG Xiaoming, SHEN Yapeng. The conservation laws and path-independent integrals for piezoelectric media [J].Acta Mechanica Sinica,1995,27(1):86-92.
[13]  MOON F C. Magneto-solid mechanics[M]. New York: John Wiley and Sons Inc, 1984: 53-86.
[14]  梁立孚.力学和电磁学中的变分原理及其应用[M].哈尔滨:哈尔滨工程大学出版社, 2011:75-98.LIANG Lifu. Variational principles and applications in mechanics and electromagnetics[M]. Harbin: Harbin Engineering University Press, 2011:75-98.
[15]  SONG Haiyan, ZHOU Zhengong, LIANG Lifu,et al. Generalized variational principles of quasi-static electro-magneto-thermo-elasticity[J]. Key Engineering Materials, 2010, 419-420: 153-156.
[16]  宋海燕,李海波,梁立孚,等.准静态电磁热弹性体第二类H-R型广义变分原理[J].强度与环境, 2010, 37(2): 8-16.SONG Haiyan, LI Haibo, LIANG Lifu, et al. The second H-R generalized variational principles of quasi-static electro-magneto-thermo-elasticity[J]. Structure and Environment Engineering, 2010, 37(2): 8-16.
[17]  宋海燕,梁立孚,周振功.准静态电磁热弹性体余能原理和广义变分原理[J].哈尔滨工程大学学报, 2011, 32(1): 33-37.SONG Haiyan, LIANG Lifu, ZHOU Zhengong. The complementary energy principle and generalized variational principles of quasi-static electro-magneto-thermo-elasticity[J]. Journal of Harbin Engineering University, 2011,32(1): 33-37.
[18]  Subcommittee on Magnetostrictive Materials of the Standards Activities Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society. IEEE standard on magnetostrictive materials: piezomagnetic nomenclature (IEEE Std 319-1990) [S]. New York: The Institute of Electrical and Electronics Engineers,1991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133