全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种面向不确定图的SimRank算法

DOI: 10.3969/j.issn.1006-7043.201305037

Keywords: 搜索引擎, 社会网络, 不确定图, SimRank, 相似度, 抽样策略

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对以往的搜索引擎日志分析都主要集中在用户行为分析、查询推荐及搜索引擎评价等方面,采用社会网络分析法对搜索引擎进行日志分析。以不确定图的方式逻辑表示搜索引擎的日志中查询词和网页的链接关系,通过基于不确定图的SimRank算法,计算查询词与网页的相似度,最终以相似度和查询词的加权方式建立网页描述库。针对概率抽样的3点基本要求,提出一种渐进式的抽样策略,从而保证采用抽样技术对于不确定图中SimRank值计算的准确性。实验表明该算法具有较好的准确率和可行性。

References

[1]  HOTHO A, J?SCHKE R, SCHMITZ C, et al. Folkrank: a ranking algorithm for folksonomies[C]//Proc FGIR. Hildesheim, Germany, 2006: 111-114.
[2]  BAO S, XUE G, WU X, et al. Optimizing web search using social annotations [C]//Proceedings of the 16th International Conference on World Wide Web, ACM. Alberta,Canada,2007: 501-510.
[3]  刘凯鹏,方滨兴.一种基于社会性标注的网页排序算法[J].计算机学报, 2010, 33(6):1014-1022.LIU Kaipeng, FANG Binxing. A novel page ranking algorithm based on social annotations [J]. Chinese Journal of Computers, 2010, 33(6):1014-1022.
[4]  LIU Y, GAO B, LIU T Y, et al. BrowseRank: letting web users vote for page importance [C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM. Singapore, 2008: 451-458.
[5]  陈红涛. 基于搜索日志的用户行为研究及应用[D]. 北京: 北京邮电大学, 2007: 14-29.
[6]  NOLL M, MEINEL C. Web search personalization via social bookmarking and tagging [J]. The Semantic Web, 2007, 4875: 367-380.
[7]  靳延安, 李瑞轩, 文坤梅, 等. 社会标注及其在信息检索中的应用研究综述[J]. 中文信息学报, 2010, 24(4): 52-62.JIN Yan’an, LI Ruixuan, WEN Kunmei, et al. A survey on social annotation and its application in information retrieval [J]. Journal of Chinese Information Processing, 2010, 24(4): 52-62.
[8]  CHOOCHAIWATTANA W, SPRING M B. Applying social annotations to retrieve and re-rank web resources [C]//Proceedings-2009 International Conference on Information Management and Engineering, ICIME. Kuala Lumpur, Malaysia,2009: 215-219.
[9]  BALFE E, SMYTH B. An analysis of query similarity in collaborative web search[J]. Advances in Information Retrieval, 2005, 3408: 330-344.
[10]  JEH G, WIDOM J. SimRank: a measure of structural-context similarity [C]//Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM. Edmonton, Canada, 2002: 538-543.
[11]  ANTONELLIS I, MOLINA H G, CHANG C C. SimRank++: query rewriting through link analysis of the click graph [C]//Proceeding of the 17th International Conference on World Wide Web 2008. Beijing, China, 2008: 408-421.
[12]  李亚楠, 许晟, 王斌. 基于加权SimRank 的中文查询推荐研究[J]. 中文信息学报, 2010, 24(3): 3-10.LI Yanan, XU Sheng, WANG Bin. Chinese query recommendation by weighted SimRank [J]. Journal of Chinese Information Processing, 2010, 24(3): 3-10.
[13]  CAI Y, LI P, LIU H, et al. SimRank: combining content and link information to cluster papers effectively and efficiently [J]. Advanced Data Mining and Applications, 2008, 5139: 317-329.
[14]  马云龙, 林原, 林鸿飞. 基于权重标准化 SimRank方法的查询扩展技术研究[J]. 中文信息学报, 2011, 25(1): 28-34.MA Yunlong, LIN Yuan, LIN Hongfei. A weight normalization based SimRank approach for query expansion [J]. Journal of Chinese Information Processing, 2011, 25(1): 28-34.
[15]  张应龙, 李翠平, 陈红,等. 不确定图上的kNN查询处理[J]. 计算机研究与发展, 2011, 48(10): 1850-1858.ZHANG Yinglong, LI Cuiping, CHEN Hong, et al. K-nearest neighbors in uncertain graph [J]. Journal of Computer Research and Development, 2011, 48(10): 1850-1858.
[16]  MORRIS M R, PAEPCKE A, WINOGRAD T. Teamsearch: comparing techniques for co-present collaborative search of digital media [C]//Proceedings of the First IEEE International Workshop on Horizontal Interactive Human-Computer Systems, TABLETOP’06. Adelaide, Australia, 2006: 97-104.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133