全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向聚类分析的邻域拓扑势熵数据扰动方法

DOI: 10.3969/j.issn.1006-7043.201311034

Keywords: 隐私保护, 聚类分析, 数据扰动, 邻域拓扑势熵, 安全邻域

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有数据扰动方法难以维持原始数据的聚类可用性问题,提出了一种隐私保护数据扰动算法DPTPE.基于邻域拓扑势熵将节点划分为不同类型,对于邻域分散型节点,以该节点的k邻域中节点坐标的均值替换其原始坐标;对于邻域紧密型节点,在其安全邻域中随机选择一个节点替换该节点。实验结果表明,DPTPE算法可以保护数据的隐私安全,还能够较好地维持数据集的聚类可用性。

References

[1]  FUNG B C M, WANG K, CHEN R, et al. Privacy-preserving data publishing: a survey of recent developments[J]. ACM Comput Surv, 2010, 42(4): 1-53.
[2]  杨高明, 杨静, 张健沛. 半监督聚类的匿名数据发布[J]. 哈尔滨工程大学学报, 2011, 32(11): 1489-1494. YANG Gaoming, YANG Jing, ZHANG Jianpei. Semi-supervised clustering-based anonymous data publishing[J]. Journal of Harbin Engineering University, 2011, 32(11): 1489-1494.
[3]  王智慧, 许俭, 汪卫,等. 一种基于聚类的数据匿名方法[J]. 软件学报, 2010, 21(4): 680-693. WANG Zhihui, XU Jian, WANG Wei, et al. Clustering-based approach for data anonymization[J]. Journal of Software, 2010, 21(4): 680-693.
[4]  MACHANAVAJJHALA A, KIFER D, GEHRKE J, et al. L-diversity: privacy beyond k-anonymity[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): 1-52.
[5]  WONG R, LI J, FU A, et al. (α,k)-anonymous data publishing[J]. Journal of Intelligent Information Systems, 2009, 33(2): 209-234.
[6]  PARAMESWARAN R, BLOUGH D M. Privacy preserving data obfuscation for inherently clustered data[J]. Journal of Information and Computer Security, 2008, 2(1):1744-1765.
[7]  倪巍伟, 陈耿, 崇志宏, 等. 面向聚类的数据隐藏发布研究[J]. 计算机研究与发展, 2012, 49(5): 1095-1104.NI Weiwei, CHEN Geng, CHONG Zhihong, et al. Privacy-preserving data publishing for clustering[J]. Journal of Computer Research and Development, 2012, 49(5): 1095-1104.
[8]  MUKHERJEE S, CHEN Z Y, GANGOPADHYAY A. A privacy-preserving technique for Euclidean distance-based mining algorithms using Fourier-related transforms[J]. Journal on Very Large Data Bases, 2006, 15(4): 293-315.
[9]  FUNG B C M, WANG K, WANG L Y, et al. Privacy-preserving data publishing for cluster analysis[J]. Data & Knowledge Engineering, 2009, 68(6):552-575.
[10]  倪巍伟, 徐立臻, 崇志宏, 等. 基于邻域属性熵的隐私保护数据干扰方法[J]. 计算机研究与发展, 2009, 46(3): 498-504. NI Weiwei, XU Lizhen, CHONG Zhihong, et al. A privacy preserving data perturbation algorithm based on neighborhood entropy[J]. Journal of Computer Research and Development, 2009, 46(3): 498-504.
[11]  淦文燕, 赫南, 李德毅, 等. 一种基于拓扑势的网络社区发现方法[J]. 软件学报, 2009, 20(8): 2241-2254. GAN Wenyan, HE Nan, LI Deyi, et al. Community discovery method in networks based on topological potential[J]. Journal of Software, 2009, 20(8): 2241-2254.
[12]  倪巍伟, 张勇, 黄茂峰, 等. 一种向量等价置换隐私保护数据干扰方法[J]. 软件学报, 2012, 23(12): 3198-3208. NI Weiwei, ZHANG Yong, HUANG Maofeng, et al. Vector equivalent replacing based privacy-preserving perturbing method[J]. Journal of Software, 2012, 23(12): 3198-3208.
[13]  OLIVEIRA S R M, ZAIANE O R. Achieving privacy preservation when sharing data for clustering[C]//Proceedings of the 2004 SDM Conference.Toronto,Canada, 2004: 67-82.
[14]  RUPA P, DOUGLAS M B. Privacy preserving data obfuscation for inherently clustered data[J]. International Journal of Information and Computer Security, 2008, 2(1): 1744-1765.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133