全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

介质阻挡放电辅助甲烷蒸汽重整的动力学分析

DOI: 10.3969/j.issn.1006-7043.201310005

Keywords: 介质阻挡放电, 甲烷蒸汽重整, 动力学, 协同反应, 化学回热, 燃气轮机

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了发展可用于等离子辅助甲烷蒸汽重整的详细反应机理,采用数值模拟和实验研究相结合的方法,系统分析了停留时间、水蒸气/甲烷摩尔比及其反应温度对甲烷转化率和产物产量的影响规律。结合一组实验数据,发展和评估了等离子体辅助甲烷蒸汽重整的详细反应动力学机理。与实验结果对比表明:该动力学机理可以准确预测甲烷转化率及其各产物产量的变化趋势。路径流分析表明CH3基再结合是CH4转化为CO的主要限制步,O基是影响CO生成的关键组分。并列式协同催化实验中有效碳回收率达到100%,该结果初步证实了路径流分析结果的正确性。所做研究明确了等离子体催化甲烷重整的特性,为非平衡等离子体与催化剂协同催化甲烷蒸汽重整的机理研究奠定了基础。

References

[1]  CARCSACI C, FACCHINI B, HARVEY S. Modular approach to analysis of chemically recuperated gas turbine cycles[J]. Energy Conversion Management, 1998;39(16/18): 1693-1703.
[2]  PAN Fumin, ZHENG Hongtao, LIU Qingzhen,et al. Design and performance calculations of chemically recuperated gas turbine on ship[J]. Proc IMechE Part A: J Power and Energy, 2013, 227(8): 908-918.
[3]  HAMMER T, KAPPES T, BALDAUF M. Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes[J]. Catalysis Today, 2004, 89: 5-14.
[4]  颜士鑫, 李晓东, 钟犁, 等. 滑动弧等离子体协助甲烷蒸汽重整制氢[J].太阳能学报, 2011, 32(5): 766-770.YAN Shixin, LI Xiaodong, ZHONG Li, et al. Gliding arc discharge plasma assisted reforming of methane into hydrogen with oxygen and water vapor[J]. Acta Energiae Solaris Sinica, 2011, 32(5): 766-770.
[5]  RUSU I, CORMIER J M. On a possible mechanism of the methane steam reforming in a gliding arc reactor[J]. Chemical Engineering Journal, 2003, 91: 23-31.
[6]  PETROVI D, MARTENS T, Van DIJK J, et al. Modeling of a dielectric barrier discharge used as a flowing chemical reactor[J]. Journal of Physics: Conference Series, 2008, 133: 1-8.
[7]  NAIR S A, NOZAKI T, OKAZAKI K. Methane oxidative conversion pathways in a dielectric barrier discharge reactor-Investigation of gas phase mechanism[J]. Chemical Engineering Journal, 2007, 132: 85-95.
[8]  李洁, 王?婕, 龙华丽, 等. 强电场中甲烷活化的汤生模型及反应动力学分析[J]. 化学工程, 2007, 35(8): 25-28.LI Jie, WANG Yujie, LONG Hihua, et al. Townsend ionization model and kinetic analysis of methane activated in strong electric field[J]. Chemical Engineering, 2007, 35(8): 25-28.
[9]  SUGASAWA M, TERASAWA T, FUTAMURA S. Effects of initial water content on steam reforming of aliphatic hydrocarbons with nonthermal plasma[J]. Journal of Electrostatics, 2010, 68: 212-217.
[10]  ZHANG X, WANG B W, LIU Y W, et al. Conversion of methane by steam reforming using dielectric-barrier discharge[J]. Chinese Journal of Chemical Engineering, 2009, 17(4): 625-629.
[11]  HIRAOKA K, AOYAMA K, MORISE K. A study of reaction mechanisms of methane in a radio-frequency glow discharge plasma using radical and ion scavengers[J]. Canadina Journal of Chemistry, 1985, 63: 2899-2905.
[12]  HAGELAAR G J M, PITCHFORD L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sci Sources and Tech, 2005, 14: 722.
[13]  KEE R J, RUPLEY F M., MEEKS E, et al. CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. SAND96-8216,1996 CHEMKIN-PRO[R]. San Diego: Reaction Design, 2008.
[14]  SUN W T, UDDI M, WON S H, et al. Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits[J]. Combustion and Flame, 2012, 159(1): 221-229.
[15]  HAMMER T H, KAPPES T H, BALDAUF M. Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes[J]. Catalysis Today, 2004, 89: 5-14.
[16]  JANARDHANAN V M, DEUTSCHMANN O. CFD analysis of a solid oxide fuel cell with internal reforming: coupled interactions of transport, heterogeneous catalysis and electrochemical processes[J]. J Power Sources, 2006, 162 (2): 1192-1202.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133