全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

矩形通道弹状流液膜特性

DOI: 10.3969/j.issn.1006-7043.201304083

Keywords: 矩形通道, 弹状流, 液膜, 泰勒气泡长度

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了深入探究矩形通道内弹状流机理,利用高速摄像系统,对矩形通道(3.25 mm×40 mm)内弹状流进行了可视化研究。实验中发现,泰勒气泡长度LT随分气相雷诺数ReG近似线性增长,但随着分液相雷诺数ReL增加,LT的增长速率减小。液膜脱离泰勒气泡时厚度δf随ReG增加而减小并趋于稳定,随ReL增加而增大。δf主要由ReG、ReL和LT决定;LT≥150 mm时,δf趋于稳定。液膜脱离泰勒气泡时速度Vf随ReL增加而增大。在低ReL时,Vf方向向下并随ReG增加而减小;当ReL≥9 102时,液膜始终向上运动,Vf随ReG变化较小,主要受ReL影响。通过数据回归分别得到了LT、δf和液膜相对脱离速度Vfr计算关联式,其与实验数据符合相对较好。

References

[1]  QUAN Shaoping. Co-current flow effects on a rising Taylor bubble[J]. Int J Multiphase Flow, 201l, 37(8): 888-897.
[2]  夏国栋,周芳德,胡明胜. 倾斜上升弹状流中Taylor气泡运动速度研究[J].化学工程,1997, 25(5): 36-41.XIA Guodong, ZHOU Fangde, HU Mingsheng. Study on the velocity of Taylor bubble in inclined upward slug flow[J]. Chemical Engineering, 1997, 25(5): 36-41.
[3]  GOPAL M, JEPSON W P. Development of digital image analysis techniques for the study of velocity and void profiles in slug flow[J]. Int J Multiphase Flow, 1997, 23(5): 945-965.
[4]  SHENER L, BARNEA D. Visualization of the instantaneous velocity profiles in gas-liquid slug flow[J]. Physico Chem Hydrodynam, 1987, 8(3): 243-253.
[5]  夏国栋,张少华,魏宸官,等.垂直及倾斜上升弹状的实验特性研究――下降液膜[J]. 北京理工大学学报, 1999, 19(1): 13-17.XIA Guodong, ZHANG Shaohua, WEI Chengguan, et al. Experimental study on gas-liquid two-phase slug flow―falling liquid film[J]. Journal of Beijing Institute of Technology, 1999, 19(1): 13-17.
[6]  王广飞,阎昌琪,曹夏昕,等. 摇摆状态下窄矩形通道内两相流流型特性研究[J].原子能科学技术, 2011, 45(11): 1329-1334.WANG Guangfei, YAN Changqi, CAO Xiaxin, et al. Flow pattern characteristics of two-phase flow through narrow rectangular channel under rolling condition[J]. Atomic Energy Science and Technology, 2011, 45(11): 1329-1334.
[7]  李希川,孙中宁. 竖直窄矩形流道液泛研究[J].哈尔滨工程大学学报, 2012, 33(1): 42-46.LI Xichuan, SUN Zhongning. Study of flooding in vertical narrow rectangular channels[J]. Journal of Harbin Engineering University, 2012, 33(1): 42-46.
[8]  BHUSAN S, GHOSH S, DAS G, et al. Rise of Taylor bubbles through narrow rectangular channels[J]. Chemical Engineering Journal, 2009, 155(1/2): 326-332.
[9]  TALIMI V, MUZYCHKA Y S, KOCABIYIK S. Slug flow heat transfer in square microchannels[J]. Int J Multiphase Flow, 2013, 62: 752-760.
[10]  HARMATHY T Z. Velocity of large drops and bubbles in media of infinite or restricted extent[J]. AIChE J, 1960, 6(2): 281-288.
[11]  VAN HOUT R, SHEMER L, BARNEA D. Evolution of hydrodynamic and statistical parameters of gas-liquid slug flow along inclined pipes[J]. Chemical Engineering Science, 2003, 58(1): 115-133.
[12]  WANG Xin, GUO Liejin, ZHANG Ximin. An experimental study of the statistical parameters of gas-liquid two-phase slug flow in horizontal pipeline[J]. Int J Heat and Mass Transfer, 2007, 50(11/12): 2439-2443.
[13]  SHEMER L, GULITSKI A, BARNEA D. On the turbulent structure in the wake of Taylor bubbles rising in vertical pipes[J]. Phys Fluids, 2007, 19(3): 1-13.
[14]  PINTO A M F R, COELHO PINHEIRO M N, CAMPOS J B L M. Coalescence of two gas slugs rising in a co-current flowing liquid in vertical tubes[J]. Chem Eng Sci, 1998, 53(16): 2973-2983.
[15]  ZHENG Donghong, CHE Defu. Experimental study on hydrodynamic characteristics of upward gas-liquid slug flow[J]. Int J Multiphase Flow, 2006, 32(10/11): 1191-1218.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133