全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于贝叶斯压缩感知多目标定位算法

DOI: 10.3969/j.issn.1006-7043.201306064

Keywords: 多目标定位, 贝叶斯压缩感知, 接收信号强度, 传感网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对室内多目标基于无线信号强度定位中的数据采集和精确度问题,引入基于贝叶斯压缩感知和拉普拉斯先验模型算法,从而满足在达到所需定位精确度的同时降低网络系统开销。所提出的方法是基于接收信号强度来感知位置变化,各移动设备上利用随机投影对接收到的信号强度进行压缩并传输,在采集中心通过基于拉普拉斯先验的贝叶斯压缩感知重构算法并结合最大似然函数法和迭代逼近法计算出各移动设备的位置。仿真结果表明了利用贝叶斯压缩感知重构算法实现室内多个移动设备的定位具有较高精确度,与orthogonal matching pursuit (OMP)重构算法相比较其定位精度至少提高了52.2%,与basis pursuit(BP)重构算法相比较至少提高了13.7%。

References

[1]  DONOHO D L. Compressed sensing[J]. Transactions on Information Theory, 2006, 52(4): 1289-1306.
[2]  CHANG A C,CHUNG C M. Covariance shaping least-squares location estimation using TOA measurements[J]. IEICE Transactions on Fundamentals of Estimation, Communication and Computer Sciences, 2007, 90(3): 691-693.
[3]  SO H C,HUI S P. Constrained location algorithm using TDOA measurements[J]. IEICE Transactions on Funda-mentals of Electronics, Communications and Computer Sciences, 2003, 86(12): 3291-3293.
[4]  RONG P, SICHITIU M L. Angle of arrival localization for wireless sensor networks[C]//Proceedings of Third Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks. Reston, USA, 2006: 374-382.
[5]  CHEUNG K W, SO H C, MA W K, et al.Received signal strength based mobile positioning via constrained weighted least squares[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Hong Kong, China, 2003: 137-140.
[6]  PIVATO P,PALOPOLI L, PETRI D. Accuracy of RSS-based centroid localization algorithms in an indoor environment[J]. IEEE Transactions on Instrumentation and Measurement, 2011,60(10): 3451-3460.
[7]  GUO Xiaonan, ZHANG Dian, NI Lionelm. Localizing multiple objects in an RF-based dynamic environment[C]//IEEE 32nd International Conference on Distributed Computing Systems.Macau,China, 2012: 576-585.
[8]  FENG Chen, SHAHROKH V, TAN Zhenhui. Multiple target localization using compressive Sensing[C]//IEEE Global Telecommunications Conference. Hawaii, USA, 2009: 1-6.
[9]  何风行,余志军,刘海涛.基于压缩感知的无线传感器网络多目标定位算法[J]. 电子与信息学报, 2012, 34(3):716-721.HE Fenghang, YU Zhijun, LIU Haitao. Multiple target localization via compressed sensing in wireless sensor networks[J]. Journal of Electronics and Information Technology, 2012, 34(3): 716-721.
[10]  ZHANG B W, CHENG X Z, ZHANG N, et al. Sparse target counting and localization in sensor networks based on compressive sensing[C]//IEEE INFOCOM.Shanghai, China, 2011: 2255-2263.
[11]  BABACAN S D, MOLINA R, KATSAGGELOS A K.Bayesian compressive sensing using laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1): 53-63.
[12]  CANDES E J,ROMBERG J,TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency in information[J]. IEEE Transactions on Information theory, 2006, 52(2): 489-509.
[13]  TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research, 2001, 1(3): 211-244.
[14]  FIGUEIREDO M A T.Adaptive sparseness for supervised learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1150-1159.
[15]  TIPPING M E, FAUL A C.Fast marginal likelihood maximization for sparse Bayesian models[C]//Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics.Key West, USA, 2003: 1-8.
[16]  章坚武,颜欢,包建荣.改进的基于拉普拉斯先验的贝叶斯压缩感知算法[J]. 电路与系统学报, 2012,17(1): 34-40.ZHANG Jianwu, YAN Huan, BAO Jianrong. Improved Bayesian compressive sensing algorithm with Laplace priors[J]. Journal of Circuits and Systems, 2012, 17(1): 34-40.
[17]  TROPP J A,GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
[18]  CHEN S S, DONOHO D L, SAUNDERS M A.Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129-159.
[19]  朱翠涛,瞿毅.基于压缩感知的稀疏事件检测[J]. 中南民族大学学报: 自然科学版, 2011, 30(1): 80-83.ZHU Cuitao, QU Yi. Sparse event detection based on compressive sensing[J].Journal of South-Central University for Nationalities: Natural Science Edition, 2011, 30(1): 80-83.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133