全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An M/M/2 Queueing System with Heterogeneous Servers Including One with Working Vacation

DOI: 10.1155/2012/145867

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper analyzes an queueing system with two heterogeneous servers, one of which is always available but the other goes on vacation in the absence of customers waiting for service. The vacationing server, however, returns to serve at a low rate as an arrival finds the other server busy. The system is analyzed in the steady state using matrix geometric method. Busy period of the system is analyzed and mean waiting time in the stationary regime computed. Conditional stochastic decomposition of stationary queue length is obtained. An illustrative example is also provided. 1. Introduction Queueing models with vacation have gained significance in the last three decades due to their wide range of applications, especially in the communication and the manufacturing systems. Doshi [1] provides an excellent survey of related works prior to 1986. Takagi [2] and Tian and Zhang [3] provide a good account of developments in this field since then. The literature on the vacation queueing models is growing rapidly. In multiserver queueing models, we come across two classes of vacation mechanisms: station vacation and server vacation. In the first case, all servers take vacation simultaneously whenever the system becomes empty and they return to the system all together. Thus, station vacation is group vacation for all servers. For example, when a system consists of a number of machines operated by a single individual this scenario occurs. In such a situation, the whole station needs to be treated as a single unit for vacation, when the system is utilized for a secondary task. In the second case, each server takes its own vacation whenever it completes a service and finds no customers waiting for service. This phenomenon also occurs in practice. For example, in a post office or bank, when a clerk completes a service and finds no customer waiting, he or she might go to attend another task. This is what we refer to as the server vacation model. Analysis of a server vacation model is more complicated than that of a station vacation model. This is because at any time point, in the latter, we may have any number of servers between and on vacation. We need to track individual servers going on vacation and completing their vacation. Upon returning from a vacation some servers may find no customers waiting for service. These servers take another vacation. But if any server finds a waiting customer on returning from a vacation, it immediately starts service. For further details on queues with station and server vacations, we refer the reader to Chao and Zhao [4]. Most of the

References

[1]  B. T. Doshi, “Queueing systems with vacations—a survey,” Queueing Systems, vol. 1, no. 1, pp. 29–66, 1986.
[2]  H. Takagi, Queueing Analysis Volume 1: Vacations and Priority System, North-Holland, Amsterdam, The Netherlands, 1991.
[3]  N. Tian and Z. G. Zhang, Vacation Queueing Models, International Series in Operations Research & Management Science no. 93, Springer, New York, NY, USA, 2006.
[4]  X. Chao and Y. Q. Zhao, “Analysis of multi-server queues with station and server vacations,” European Journal of Operational Research, vol. 110, no. 2, pp. 392–406, 1998.
[5]  Y. Levy and U. Yechiali, “An queue with servers' vacations,” Information Systems and Operational Research, vol. 14, no. 2, pp. 153–163, 1976.
[6]  B. Vinod, “Exponential queues with servers' vacations,” Journal of the Operational Research Society, vol. 37, no. 10, pp. 1007–1014, 1986.
[7]  E. P. C. Kao and K. S. Narayanan, “Analyses of an M/M/N/ queue with server's vacations,” European Journal of Operational Research, vol. 54, no. 2, pp. 256–266, 1991.
[8]  L. Servi and S. Finn, “M/M/1 queue with working vacations (M/M/1/WV),” Performance, vol. 50, pp. 41–52, 2002.
[9]  J. Kim, D. Choi, and K. Chae, “Analysis of queue-length distribution of the M/G/1with working vacations,” in Proceedings of the International Conference on Statistics and Related, Honolulu, Hawaii, USA, 2003.
[10]  D. A. Wu and H. Takagi, “M/G/1 queue with multiple working vacations,” Performance Evaluation, vol. 63, no. 7, pp. 654–681, 2006.
[11]  Y. Baba, “Analysis of a GI/M/1 queue with multiple working vacations,” Operations Research Letters, vol. 33, no. 2, pp. 201–209, 2005.
[12]  N.-S. Tian, J.-H. Li, and Z. G. Zhang, “Matrix analytic method and working vacation queues—a survey,” International Journal of Information and Management Sciences, vol. 20, no. 4, pp. 603–633, 2009.
[13]  J. Li and N. Tian, “The M/M/1 queue with working vacations and vacation interruptions,” Journal of Systems Science and Systems Engineering, vol. 16, no. 1, pp. 121–127, 2007.
[14]  M. Zhang and Z. Hou, “Performance analysis of queue with working vacations and vacation interruption,” Applied Mathematical Modelling, vol. 35, no. 4, pp. 1551–1560, 2011.
[15]  M. F. Neuts and Y. Takahashi, “Asymptotic behavior of the stationary distributions in the queue with heterogeneous servers,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol. 57, no. 4, pp. 441–452, 1981.
[16]  B. Krishna Kumar and S. Pavai Madheswari, “An queueing system with heterogeneous servers and multiple vacations,” Mathematical and Computer Modelling, vol. 41, no. 13, pp. 1415–1429, 2005.
[17]  W. Szpankowski, “Stability conditions for multidimensional queueing systems with computer applications,” Operations Research, vol. 36, no. 6, pp. 944–957, 1988.
[18]  L. I. Sennott, P. A. Humblet, and R. L. Tweedie, “Mean drifts and the nonergodicity of Markov chains,” Operations Research, vol. 31, no. 4, pp. 783–789, 1983.
[19]  G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM Series on Statistics and Applied Probability, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1999.
[20]  M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models, vol. 2 of Johns Hopkins Series in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, Md, USA, 1981, [1994 version is Dover Edition].
[21]  M. F. Neuts and D. M. Lucantoni, “A Markovian queue with servers subject to breakdowns and repairs,” Management Science, vol. 25, no. 9, pp. 849–861, 1979.
[22]  J. G. Kemeny and J. L. Snell, Finite Markov Chains, The University Series in Undergraduate Mathematics, D. Van Nostrand, Princeton, NJ, USA, 1960.
[23]  V. P. Singh, “Two-server Markovian queues with balking: heterogeneous versus homogeneous servers,” Operations Research, vol. 18, no. 1, pp. 145–159, 1970.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133