全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水平管道内冰浆流动阻力特性实验研究

DOI: 10.3969/j.issn.1006-7043.201212015

Keywords: 冰浆, 两相流, 水平管道, 流变特性, 压降, 流动阻力

Full-Text   Cite this paper   Add to My Lib

Abstract:

冰浆是一种能量密集型相变流体,掌握管道内冰浆的流动特性对于冰浆介质的工程推广尤为关键。以水平管道冰浆输送系统为研究对象,基于固液两相流非牛顿流变理论和实验测试相结合的方法,研究了在不同输送速度、不同冰粒子浓度及不同管径时冰浆流体所表现出的非牛顿流变特性和阻力特性。研究结果表明,冰浆流动的流变特性满足幂律流变特征,其流变系数随着冰粒子浓度及管道直径的增大而增大,而流变指数的变化规律则与流变系数相反。与此同时,流变参数的改变直接影响冰浆流动的阻力特性分布。当流速较低时,随着流变系数的增大及流变指数的减小,冰浆流体管道流动的阻力系数表现出显著的差异性。

References

[1]  EGOLF P W, KAUFFELD M. From physical properties of ice slurries to industrial ice slurry applications\[J\]. International Journal of Refrigeration, 2005, 28(1): 1-12. [2]ILLAN F, VIEDMA A. Heat exchanger performance modeling using ice slurry as secondary refrigerant\[J\]. International Journal of Refrigeration, 2012, 35(5): 1275-1283.? [3]姚豪, 周春艳, 梁德清, 等. 水合物浆和冰浆高密度潜热输送研究进展\[J\]. 化工学报, 2003, 54(S1): 57-61.?YAO Hao, ZHOU Chunyan, LIANG Deqing,et al. Recent research advances on hydrate slurry and ice slurry for high density latent?heat transportation\[J\]. Journal of Chemical Industry and Engineering (China), 2003, 54(S1): 57-61.? [4]GROZDEK M, KHODABANDEH R, LUNDQVIST P. Experimental investigation of ice slurry flow pressure drop in horizontal tubes\[J\]. Experimental Thermal and Fluid Science, 2009, 33(2): 357-370.? [5]ILLAN F, VIEDMA A. Experimental study on pressure drop and heat transfer in pipelines for brine based ice slurry part II: dimensional analysis and rheological model \[J\]. International Journal of Refrigeration, 2009, 32(5): 1024-1031. [6]AYEL V, LOTTIN O, PEERHOSSAINI H. Rheology, flow behaviour and heat transfer of ice slurries: a review of the state of the art\[J\]. International Journal of Refrigeration, 2003, 26(1): 95-107. [7]KITANOVSKI A, VUARNOZ D, CAESAR D A, et al. The fluid dynamics of ice slurry\[J\]. International Journal of Refrigeration, 2005, 28(1): 37-50.? [8]KAUFFELD M, KAWAJI M, EGOLF P W. Handbook on ice slurries, fundamentals and engineering \[M\]. Paris: International Institute of Refrigeration, 2005:120-121.? [9]KAUSHAL D R, SATO K, TOYOTA T, et al. Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry\[J\]. International Journal of Multiphase Flow, 2005, 31(7): 809-823.? [10]BEDECARRATS J P, STRUB F, PEUVREL C. Thermal and hydrodynamic considerations of ice slurry in heat exchangers\[J\]. International Journal of Refrigeration, 2009, 32(7): 1794-1800. [11]沈仲棠, 刘鹤年. 非牛顿流体力学及其应用\[M\]. 北京: 高等教育出版社, 1989: 63-72.? [12]CHHABRA R P, RICHARDSON J F. Non?Newtonian flow in the process industries\[M\]. Oxford: Butterworth?Heinemann, 1999: 74-78.? [13]MELLARI S, BOUMAZA M, EGOLF P W. Physical modeling, numerical simulations and experimental investigations of non?Newtonian ice slurry flows\[J\]. International Journal of Refrigeration, 2012, 35(5): 1284-1291.? [14]NIEZGODA?ZELASKO B, ZALEWSKI W. Momentum transfer of ice slurry flows in tubes, experimental investigations\[J\]. International Journal of Refrigeration, 2006, 29(3): 418-428. ? [15]WANG J H, WANG S G, ZHANG T F, et al. Numerical investigation of ice slurry isothermal flow in various pipes\[J\]. International Journal of Refrigeration, 2013, 36(1): 70-80.? [16]蔡增基, 龙天渝. 流体力学泵与风机\[M\]. 北京: 中国建筑工业出版社, 1999: 90-91.?CAI Z J, LONG T Y. Hydrodynamics of pumps and fans\[M\]. Beijing: China Architecture and Building Press, 1999: 90-91.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133