全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电火花加工放电状态的自适应滤波

DOI: 10.11990/jheu.201504044

Keywords: 自适应滤波, 放电状态, 电火花加工, 卡尔曼滤波, 中间变量法, 参数辨识

Full-Text   Cite this paper   Add to My Lib

Abstract:

电火花加工过程具有非线性、弱稳态的特性,加工过程中放电状态变化剧烈,导致控制变量随之大幅度震动,对系统稳定性极为不利,因此需要对放电状态曲线进行光滑滤波。由于二阶自回归放电状态模型的参数辨识是有偏估计,提出采用中间变量的方法消除参数的有偏估计。采用一个卡尔曼滤波器建立中间变量,另一个卡尔曼滤波器用于二阶自回归放电状态模型的参数辨识,2个卡尔曼滤波器共同组成了一个自适应滤波器。经实验数据验证:该自适应滤波方法不仅能够光滑放电状态曲线,而且能够消除线性滤波本身固有的相移和延迟,同时,自适应滤波方法不会像线性滤波方法造成整个控制系统阶次大幅升高、稳定性下降,能够充分保障实时控制和系统稳定性。

References

[1]  郝逸轩.数字滤波器的优化设计研究[D].长沙:长沙理工大学, 2012:13-14. HAO Yixuan. Study of digital filters optimal design[D]. Changsha:Changsha University of Science and Technology, 2012:13-14.
[2]  赵海滨. MATLAB应用大全[M].北京:清华大学出版社, 2012:604-605. ZHAO Haibin. MATLAB applications[M]. Beijing:Tsinghua University Press, 2012:604-605.
[3]  KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1):35-45.
[4]  WONG K, POLAK E. Identification of linear discrete time systems using the instrumental variable method[J]. IEEE Transactions on Automatic Control, 1967, 12(6):707-718.
[5]  FRIEDLANDER B. Instrumental variable methods for ARMA spectral estimation[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1983, 31(2):404-415.
[6]  YOUNG P C. An instrumental variable method for real-time identification of a noisy process[J]. Automatica, 1970, 6(2):271-287.
[7]  NELSON L W, STEAR E. The simultaneous on-line estimation of parameters and states in linear systems[J]. IEEE Transactions on Automatic Control, 1976, 21(2):94-98.
[8]  FRIEDLANDER B, STOICA P, SODERSTR?M T. Instrumental variable methods for ARMA parameter estimation[C]//Proceedings of IFAC Identification and System Parameter Estimation. New York, 1985:29-36.
[9]  ZHOU Ming, HAN Fuzhu, WANG Yongxain, et al. Assessment of the dynamical properties in EDM process-Detecting deterministic nonlinearity of EDM process[J]. The International Journal of Advanced Manufacturing Technology, 2009, 44(1/2):91-99.
[10]  ZHOU Ming, HAN Fuzhu, TANG Boyan. The methodology of detecting dynamical properties of electrical discharge machining (EDM) process towards building a timely varied linear predictive model[C]//16th International Symposium on Electromachining (ISEM XVI). Shanghai, 2010:73-78.
[11]  LENNART L. System identification-theory for the user[M]. 2nd ed. Sweden:Prentice Hall PTR, 1999:224-226.
[12]  霍孟友,张建华,艾兴.电火花放电加工间隙状态检测方法综述[J].电加工与模具, 2003(3):17-20. HUO Mengyou, ZHANG Jianhua, AI Xing. Summarization of gap states monitoring methods in EDM[J]. Electromachining & Mould, 2003(3):17-20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133