全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

任意边界条件三维弹性矩形厚板结构振动分析

DOI: 10.11990/jheu.201409001

Keywords: 三维弹性理论, 矩形厚板, 任意边界条件, 改进傅里叶级数法

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前板结构振动特性的计算分析大多数都是基于经典板理论或者其他高阶近似理论,为了深入理解其振动特性,对于一些厚度比较大的板,采用三维弹性理论来进行分析十分必要。在空间坐标系中沿3个坐标轴方向的位移场使用三维改进傅里叶级数法来建模,通过计算系统拉格朗日函数的极值即可计算出描述位移场的所有未知系数。将本文计算结果与文献结果和NASTRAN软件计算的有限元结果进行比较,最大偏差不超过1.4%,结果吻合良好。结果表明:本文方法能够准确预测三维弹性矩形厚板结构的振动特性,且无论矩形板的边界条件是否对称,都能使用该方法来简便地获得固有频率、振型以及强迫响应。

References

[1]  LEISSA A W. The free vibration of rectangular plates[J]. Journal of Sound and Vibration, 1973, 31(3):257-293.
[2]  LEISSA A W. Recent research in plate vibrations:classical theory[J]. The Shock and Vibration Digest, 1977, 9(10):13-24.
[3]  MINDLIN R D. Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates[J]. ASME Journal of Applied Mechanics, 1951, 18(1):31-38.
[4]  MINDLIN R D, SCHACKNOW A, DERESIEWICZ H. Flexural vibrations of rectangular plates[J]. Journal of Applied Mechanics, 1956, 23:430-436.
[5]  BELLMAN R, CASTI J. Differential quadrature and long-term integration[J]. Journal of Mathematical Analysis and Applications, 1971, 34(2):235-238.
[6]  BELLMAN R, KASHEF B G, CASTI J. Differential quadrature:a technique for the rapid solution of nonlinear partial differential equations[J]. Journal of Computational Physics, 1972, 10(1):40-52.
[7]  CIVAN F, SLIEPCEVICH C M. Application of differential quadrature to transport processes[J]. Journal of Mathematical Analysis and Applications, 1983, 93(1):206-221.
[8]  MALIK M, BERT C W. Three-dimensional elasticity Solutions for free vibrations of rectangular plates by the differential quadrature method[J]. International Journal of Solids and Structures, 1998, 35(3/4):299-318.
[9]  LIEW K M, HUNG K C, LIM M K. Three-dimensional vibration of rectangular plates:Variance of simple support conditions and influence of in-plane inertia[J]. International Journal of Solids and Structures, 1994, 31(23):3233-3247.
[10]  LIEW K M, HUNG K C, LIM M K. Free vibration studies on stress-free three-dimensional elastic solids[J]. Journal of Applied Mechanics, 1995, 62(1):159-165.
[11]  LIEW K M, HUNG K C, LIM M K. Three-dimensional vibration of rectangular plates:effects of thickness and edge constraints[J]. Journal of Applied Mechanics, 1995, 182(5):709-727.
[12]  HAN J B, LIEW K M. Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations[J]. International Journal of Mechanical Sciences, 1997, 39(9):977-989.
[13]  LEISSA A, ZHANG Zhongding. On the three-dimensional vibrations of the cantilevered rectangular parallelepiped[J]. Journal of the Acoustical Society of America, 1983, 73(6):2013-2021.
[14]  ZHOU D, CHEUNG Y K, AU F T K, et al. Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method[J]. International Journal of Solids and Structures, 2002, 39(26):6339-6353.
[15]  杨正光,仲政,戴瑛.功能梯度矩形板的三维弹性分析[J].力学季刊, 2004, 25(1):15-20. YANG Zhengguang, ZHONG Zheng, DAI Ying. Three dimensional elasticity analysis of a functionally graded rectangular plate[J]. Chinese Quarterly of Mechanics, 2004, 25(1):15-20.
[16]  杨亚政,刘华.层合板自由振动和强迫振动的三维精确解[J].力学与实践, 2008, 30(1):23-26. YANG Yazheng, LIU Hua. Three-dimensional exact solution for free and forced vibrations of multilayered plates[J]. Mechanics in Engineering, 2008, 30(1):23-26.
[17]  DU Jingtao, LI W L, JIN Guoyong, et al. An analytical method for the in-plane vibration analysis of rectangular plates with elastically restrained edges[J]. Journal of Sound and Vibration, 2007, 306(3/4/5):908-927.
[18]  LI W L, ZHANG Xuefeng, DU Jingtao, et al. An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports[J]. Journal of Sound and Vibration, 2009, 321(1/2):254-269.
[19]  DU J T, LI W L, LIU Z G. Acoustic analysis of a rectangular cavity with general impedance boundary conditions[J]. The Journal of the Acoustical Society of America, 2011, 130(2):807-817.
[20]  LIM C W, LIEW K M, KITIPORNCHAI S. Numerical aspects for free vibration of thick plates Part I:Formulation and verification[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 156(1/2/3/4):15-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133