WANG C C, HUANG W M, DING Z, et al. Cooling-water-responsive shape memory hybrids[J]. Composites Science and Technology, 2012, 72(10): 1178-1182.
[4]
LU Haibao, LIANG Fei, GOU Jihua. Nanopaper enabled shape-memory nanocomposite with vertically aligned nickel nanostrand: controlled synthesis and electrical actuation[J]. Soft Matter, 2011, 7(16): 7416-7423.
[5]
LUO Xiaofan, MATHER P T. Conductive shape memory nanocomposites for high speed electrical actuation[J]. Soft Matter, 2010, 6(10): 2146-2149.
[6]
MATHER P T, LUO Xiaofan, ROUSSEAU I A. Shape memory polymer research[J]. Annual Review of Materials Research, 2009, 39: 445-471.
[7]
MENG Qinghao, HU Jinlian. A review of shape memory polymer composites and blends[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(11): 1661-1672.
[8]
VOHRER U, KOLARIC I, HAQUE M H, et al. Carbon nanotube sheets for the use as artificial muscles[J]. Carbon, 2004, 42(5/6): 1159-1164.
[9]
LI Chunyu, THOSTENSON E T, CHOU T W. Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites[J]. Composites Science and Technology, 2008, 68(6): 1445-1452.
[10]
ENO M, KIM Y A, HAYASHI T, et al. Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications[J]. Carbon, 2001, 39(9): 1287-1297.
[11]
LEE C G, WEI Xiaoding, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[12]
CHEN J H, JANG C, ADAM S, et al. Charged-impurity scattering in graphene[J]. Nature Physics, 2008, 4(5): 377-381.