全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

核电二回路腐蚀管道的抗震时变可靠度

DOI: 10.11990/jheu.201406039

Keywords: 核电, 管道, 流动加速腐蚀, 抗震, 时变可靠度

Full-Text   Cite this paper   Add to My Lib

Abstract:

流动加速腐蚀(FAC)是造成核电厂二回路碳钢管道失效的主要原因之一.根据腐蚀管道剩余强度评价方法和核电厂承压管道抗震设计规范RCC-M,提出了基于应力的失效极限状态方程对二回路腐蚀缺陷管道抗震可靠度进行计算.通过不同腐蚀管道剩余强度评价方法,采用一次二阶矩(JC)法分析了二回路腐蚀管道的时变抗震可靠性指标,得到了流动加速腐蚀管道抗震可靠性随运行年限的演化规律,对核电二回路管道的评估和修复提供参考.

References

[1]  束国刚, 薛飞, ?文新, 等. 核电厂管道的流体加速腐蚀及其老化管理[J]. 腐蚀与防护, 2006, 27(2): 72-76. SHU Guogang, XUE Fei, TI Wenxin, et al. Flow accelerated corrosion and aging management in nuclear power plants[J]. Corrosion and Protection, 2006, 27(2): 72-76.
[2]  CHEXL B, HOROWITZ J, DOOLCY B, et al. Flow accelerated corrosion in power plants[R]. EPRI TR-1O6611RI, Barleben: Electric Power Research Institute,1998.
[3]  潘华,李金臣,吴迪忠. 2007年7月16日日本新?地震对柏崎刈羽核电厂的影响[J]. 国际地震动态, 2007,11(11): 21-32.PAN Hua, LI Jinchen, WU Dizhong.The influence of Xin Xie earthquake(Japan ,2007,7,16)on the Bo Qi Yi Yu nuclear power plant[J]. Recent Developments in World Seismology, 2007,11(11):21-32.
[4]  赵明,梁平,龙新峰. 基于最大Lyapunov指数对腐蚀深度的预测[J].机械工程学报, 2008, 44 (1) : 217-221.ZHAO Ming, LIANG Ping, LONG Xinfeng.Forecasting corrosion depth based on the maximum Lyapunov exponent[J]. Chinese Journal of Mechanical Engineering, 2008, 44 (1) : 217-221.
[5]  陈永红,张大发,王悦民. 基于分形理论的核动力管道腐蚀坑深度预测模型研究[J].原子能利学技术, 2009, 43(8): 673-677.CHEN Yonghong, ZHANG Dafa, WANG Yueming. Corrosion pit depth prediction model of nuclear power pipeline using fractal theory[J]. Atomic Energy Science and Technology, 2009,43(8):673-677.
[6]  刘锐,张春明,马帅,等. 核管道腐蚀失效分析及最大腐蚀深度预测[C]//第十七届全国反应堆结构力学会议. 上海, 2012.LIU Rui, ZHANG Chunming, MA Shuai, et al.Corrosion failure analysis and corrosion depth prediction of the nuclear pipeline[C]//17thNational Conference on Structural Mechanics in Reactor Technology. Shanghai, 2012.
[7]  帅健,张春娥,陈福来. 腐蚀管道剩余强度评价方法的对比研究[J]. 天然气工业, 2006, 26(11): 122-125.SHUAI Jian, ZHANG Chun’e, CHEN Fulai. Comparative study on the evaluation method of remaining strength of corroded pipeline[J]. Natural Gas Industry, 2006, 26(11): 122-125.
[8]  HAD 102/03, 用于沸水堆、压水堆和压力管式反应堆的安全功能和部件分级[S]. 1986.
[9]  RCC-M (2000 edition+2002 add), design and construction rules for mechanical components of PWR nuclear islands[S]. 2002.
[10]  CALEYO F, GONZALEZ J L, HALLEN J M. A study on the reliability assessment methodology for pipelines with active corrosion defects[J]. International Journal of Pressure Vessels and Piping, 2002, 79(1): 77-86.
[11]  董玉华, 高惠临, 周敬恩, 等. 含缺陷油气管线结构的可靠性计算[J]. 石油学报, 2003, 24(1): 96-99.DONG Yuhua, GAO Huilin, ZHOU Jing’en, et al. Reliability estimation of oil and gas pipelines with some defects[J]. Acta Petrolei Sinica, 2003, 24(1): 96-99.
[12]  SHEIKH A K, BOAH J K, HANSEN D A. Statistical modeling of pitting corrosion and pipeline reliability[J]. Corrosion, 1990, 46(3): 190-197.
[13]  刘锐, 李铁萍, 张春明. 基于RCC-M与ASME的核2/3级管道应力评定比较[J]. 压力容器, 2013, 30(3): 52-56. LIU Rui, LI Tieping, ZHANG Chunming. Comparison between RCC-M and ASME for stress evaluation of nuclear safety class 2/3 pipes[J]. Pressure Vessel Technology, 2013, 30(3): 52-56.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133