全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同加载速率下梁柱边节点的抗震性能

DOI: 10.11990/jheu.201406003

Keywords: 梁柱边节点, 加载速率, 轴压比, 软化拉-压杆模型, 破坏形态, 承载力, 位移延性, 抗震性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究梁柱边节点的动态力学性能,采用位移加载控制方式,对3个梁柱边节点组合体试件开展动态加载试验.根据软化拉-压杆模型,预测了节点核心区裂缝的开展,并分析了轴压比和加载速率对节点破坏形态、承载能力、位移延性的影响规律.结果表明:轴压比增大后,节点内裂缝数量减少,节点核心区斜裂缝与竖向轴力的夹角减小;随加载速率的提高,试件断裂面上越来越多的骨料被拉断,节点组合体严重损伤部分发生转移;加载速率提高后,试件的水平抗剪承载力提高9.73%,但试件的水平抗剪承载力随轴压比的变化不明显;节点组合体的变形能力随加载速率或轴压比的提高而减弱.

References

[1]  HWANG S J, LEE H J. Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joints for seismic resistance[J]. ACI Structural Journal, 1999, 965: 846-857.
[2]  HWANG S J, LEE H J. Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance[J]. ACI Structural Journal, 2000, 971: 35-44.
[3]  傅剑平. 钢筋混凝土框架节点抗震性能与设计方法研究[D]. 重庆: 重庆大学, 2002: 88-208. FU Jianping. Seismic behaviour and design of Joints in a reinforced concrete frame[D]. Chongqing: Chongqing University, 2002: 88-208.
[4]  赵国藩. 高等钢筋混凝土结构学[M]. 北京: 机械工业出版社, 2005: 383-387.
[5]  BELARBI A, HSU T T C. Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete[J]. ACI Structural Journal, 1994, 914: 465-474.
[6]  闫东明, 林皋, 王哲, 等. 不同应变速率下混凝土直接拉伸试验研究[J]. 土木工程学报, 2005, 386: 97-103. YAN Dongming, LIN Gao, WANG he, et al. A study on direct tensile properties of concrete at different strain rates[J]. China Civil Engineering Journal, 2005, 386: 97-103.
[7]  TAEDA J I. Dynamic fracture of concrete structures due to severe earthquakes and some consideration on countermeasures[C]//Proceedings of the 8th World Conference on Earthquake Engineering. San Francisco, USA, 1984: 299-306.
[8]  BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates[J]. Material and Structures, 1991, 24(6): 425-450.
[9]  ABRAMS D A. Effect of rate of application of load on the compressive strength of concrete[C]// Proceedings of the 20th Conference on ASTM. West Conshohocken, USA: ASTM, 1917: 366-377.
[10]  MALVAR L J, ROSS C A. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6): 735-739.
[11]  中国水电水利科学研究院. DL 5073-2000, 水工建筑物抗震设计规范[S]. 北京: 中国电力出版社, 2001.
[12]  MANJOINE M J. Influence of rate of strain and temperature on yield stresses of mild steel[J]. Journal of Applied Mechanics, 1944, 11: 211-218.
[13]  KNOBLOCH M, PAULI J, FONTANA M. Influence of the strain-rate on the mechanical properties of mild carbon steel at elevated temperatures[J]. Materials and Design, 2013, 49: 553-565.
[14]  MUTSUYOSHI H, MACHIDA A. Properties and failure of reinforced concrete members subjected to dynamic loading[J]. Transactions of the Japan Concrete Institute, 1984, 6: 521-528.
[15]  ADHIKARY S D, LI B, FUJIKAKE K. Dynamic behavior of reinforced concrete beams under varying rates of concentrated loading[J]. International Journal of Impact Engineering, 2012, 47: 24-38.
[16]  LAMARCHE C P, TREMBLAY R. Seismically induced cyclic buckling of steel columns including residual-stress and strain-rate effects[J]. Journal of Constructional Steel Research, 2011, 679: 1401-1410.
[17]  BHOWMIC A , DRIVER R G, GRONDIN G Y. Seismic analysis of steel plate shear walls considering strain rate and P-delta effects[J]. Journal of Constructional Steel Research, 2009, 655: 1149-1159.
[18]  UNAL M, BURA B. Development and analytical verification of an inelastic reinforced concrete joint model[J]. Engineering Structures, 2013, 52: 284-294.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133