全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

45钢高速铣削表面粗糙度预测

DOI: 10.11990/jheu.201412077

Keywords: 表面粗糙度预测, 高速铣削, 最小二乘支持向量机, 粒子群算法, 回归分析, 预测精度, 45钢

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高高速铣削加工表面粗糙度预测的精确性以及模型的通用性,提出了一种基于粒子群最小二乘支持向量机(PSO-LSSVM)算法的高速铣削加工表面粗糙度预测方法。以工件硬度以及铣削参数为影响因素,采用回归分析方法、最小二乘支持向量机(LSSVM)以及PSO-LSSVM方法,分别建立了45钢高速铣削加工表面粗糙度预测模型,并对模型的预测精度进行了试验验证和对比分析。结果表明:相同样本条件下,回归分析方法的预测误差较大,PSO-LSSVM预测模型平均预测误差仅为LSSVM方法平均预测误差的50%。PSO-LSSVM预测模型具有较高的预测精度和泛化能力,能够准确地预测高速铣削不同硬度的工件表面粗糙度,同时为铣削参数的选择和表面质量的控制提供了依据。

References

[1]  王海涛, 刘伟强, 杨建国. 基于RBF神经网络的磨削表面粗糙度预测模型[J]. 机床与液压, 2014, 42(3):107-111.WANG Haitao, LIU Weiqiang, YANG Jianguo. Grinding surface roughness prediction model based on RBF neural network[J]. Machine Tool & Hydraulics, 2014, 42(3):107-111.
[2]  王素玉, 赵军, 艾兴, 等. 高速切削表面粗糙度理论研究综述[J]. 机械工程师, 2004, 10:3-6. WANG Suyu, ZHAO Jun, AI Xing, et al Theoretical research of surface roughness for HSM[J].Mechanical Engineer, 2004, 10:3-6.
[3]  汪振华, 赵成刚, 袁军堂, 等. 高速铣削AlMn1Cu表面粗糙度变化规律及铣削参数优化研究[J]. 南京理工大学学报:自然科学版, 2010, 34(4):537-542. WANG Zhenhua, ZHAO Chenggang, YUAN Juntang, et al. Surface roughness of AlMnCu and cutting parameter optimization in high-speed end milling[J] Journal of Nanjing University of Science and Technology:Natural Science, 2010, 34(4):537-542.
[4]  陈锦江, 龙超, 王超. 高速铣削P20模具钢表面粗糙度预测模型研究[J]. 组合机床与自动化加工技术, 2012(12):60-62. CHEN Jinjiang, LONG Chao, WANG Chao. Prediction model of surface roughness on P20 mold steel by high speed milling[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2012(12):60-62.
[5]  陈英俊, 陈庆华. 径向基函数神经网络在高速铣削表面粗糙度预测中的应用[J]. 组合机床与自动化加工技术, 2013(6):6-8.CHEN Yingjun, CHEN Qinghua. Application of RBF neural network in surface roughness prediction of high-speed milling[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013(6):6-8.
[6]  刘维伟, 李锋, 任军学, 等. 基于标准粒子群算法的GH4169高速铣削表面粗糙度研究[J]. 中国机械工程, 2011, 22(22):2654-2657, 2771.LIU Weiwei, LI Feng, REN Junxue, et al. Research on surface roughness based on SPSO in high speed milling of GH4169[J]. China Mechanical Engineering, 2011, 22(22):2654-2657, 2771.
[7]  SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300.
[8]  林献坤, 李郝林, 袁博. 基于PSO-SVR的数控平面磨削表面粗糙度智能预测研究[J]. 系统仿真学报, 2009, 21(24):7805-7808. LIN Xiankun, LI Haolin, YUAN Bo. Research on PSO-SVR based intelligent prediction of surface roughness for CNC surface grinding process[J]. Journal of System Simulation, 2009, 21(24):7805-7808.
[9]  吴德会. 基于最小二乘支持向量机的铣削加工表面粗糙度预测模型[J]. 中国机械工程, 2007, 18(7):838-841.WU Dehui. A prediction model for surface roughness in milling based on least square support vector machine[J]. China Mechanical Engineering, 2007, 18(7):838-841.
[10]  ?AYDA??#x1;? U, EKICI S. Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel[J]. Journal of Intelligent Manufacturing, 2012, 23(3):639-650.
[11]  BHARATHI RAJA S, BASKAR N. Application of particle swarm optimization technique for achieving desired milled surface roughness in minimum machining time[J]. Expert Systems with Applications, 2012, 39(5):5982-5989.
[12]  HU Meiqi, WU T, WEIR J D. An adaptive particle swarm optimization with multiple adaptive methods[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(5):705-720.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133