王永伟. 结构疲劳裂纹扩展的数值模拟[D]. 大连: 大连理工大学, 2005: 26-42. WANG Yongwei. Numerical simulations of fatigue crack growth of structure[D]. Dalian: Dalian University of Technology, 2005: 26-42.
[2]
程靳, 赵树山. 断裂力学[M]. 北京: 科学出版社, 2006: 21-45.
[3]
BITTENCOURT T N, WAWRZYNEK P A, INGRAFFEA A R, et al. Quasi-automatic simulation of crack propagation for 2D LEFM problems[J]. Engineering Fracture Mechanics, 1996, 52(2): 321-334.
[4]
XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434.
[5]
BOUCHARD P O, BAY F, CHASTEL Y. Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(35/36): 3887-3908.
[6]
LIU G R, NOURBAKHSHNIA N, CHEN L, et al. A novel general formulation for singular stress field using the ES-FEM method for the analysis of mixed-mode cracks[J]. International Journal of Computational Methods, 2010, 7(1): 191-214.
[7]
KHOEI A R, AZADI H, MOSLEMI H. Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique[J]. Engineering Fracture Mechanics, 2008, 75(10): 2921-2945.
[8]
王慰军. 基于ABAQUS的裂纹扩展仿真软件及应用[D]. 杭州: 浙江大学, 2006: 17-44. WANG Weijun. The program and its applications for simulation of crack propagation based on ABAQUS[D]. Hangzhou: Zhejiang University, 2006: 17-44.
[9]
NOURBAKHSHNIA N, LIU G R. A quasi-static crack growth simulation based on the singular ES-FEM[J]. International Journal for Numerical Methods in Engineering, 2011, 88(5): 473-492.
[10]
XUAN H N, LIU G R, BORDAS S, et al. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252-273.
[11]
DUFLOT M, DANG H N. A meshless method with enriched weight functions for fatigue crack growth[J]. International Journal for Numerical Methods in Engineering, 2004, 59(14): 1945-1961.